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Abstract
• A deep learning method for classifying first-episode psy-

chosis (FEP) patients from neural and behavioral record-
ings during a novel live face-to-face interaction paradigm

• Recurrent encoder-decoder networks to learn (joint) com-
pressed representations of multimodal brain imaging and
behavioral data, e.g. fNIRS, EEG, and facial expressions

• We show that these (joint) learned representations improve
FEP classification and also can predict specific GAF role
scores (measure of functioning)

Experimental Setup
“Live interactive neuroscience” approach [1]
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• 19 typically developing (TD) and 14 FEP patients

• Functional brain responses are acquired with Shimadzu
LABNIRS (134 channels) and EEG (32 channels) along
with facial expression recordings

• 24 blocks (each of 30 seconds) of brain activity where the
actor is stimulated by different emotionally valenced videos
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• The action units (AU) of facial expressions were computed
using OpenFace [2]

• The encoder and decoder framework consists of multiple
long short-term memory (LSTM) layers to learn latent rep-
resentations (128 dimensional) from multiple modalities in-
cluding fNIRS, EEG, and facial expressions

• The learned representations are further fed to a multilayer
perceptron (MLP) for classification in trials and subjects
withheld during training

• Utilize dimensionality reduction method tPHATE [3] as
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Results
• The classification accuracy using

fNIRS data on withheld subjects is
85%, outperforming traditional sup-
port vector machine (SVM) accuracy
of 71% and stand-alone MultiLayer
Perceptron (MLP) accuracy of 67%

• Visualizing the learned embeddings in 3-D space using
tPHATE enables the identification of task switching times

Unimodal EEG Curvatures

Multimodal EEG + fNIRS Curvatures

Multimodal EEG + Face Curvatures

Conclusions
• Incorporating joint representations from fNIRS and EEG

(theta band) data yields best classification

• The correlation coefficient between predicted and true GAF
(Global Assessment of Functioning) scores is 0.4789

• Multimodal representations improve curvature discrimina-
tion between FEP and TD individuals
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