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Next 90 ± ? minutes: signals processing over graphs

About me
Signal Processing, Indian Institute of Space Science and Technology
(graphs, Fourier, wavelets)

Electrical Engineering, Iowa State University (Image Processing)

Machine Learning, Georgia Tech (using structure in data)
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Introduction Classical vs Graph signal Processing

Classical Signal Processing

Translation, filtering, convolution, modulation, Fourier
transform, sampling . . .

t1 t2 t3 tN

Structure behind time-series (speech, EEG, fMRI,. . . )

Structure behind image
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Introduction Classical vs Graph signal Processing

Classical Signal Processing: Modulation

Modulation is used to change the frequency band of a signal
Enables RF communication in different frequency bands

Used in cell phones, AM/FM radio, WLAN, cable TV, . . .

Higher frequencies lead to smaller antennas
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Introduction Classical vs Graph signal Processing

Classical Signal Processing: Filtering

Filtering is used to remove undesired signals outside of the
frequency band of interest

Enables selection of a specific radio, TV, WLAN, cell phone, cable
TV

Also fundamental for denoising, smoothing, etc.
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Introduction Classical vs Graph signal Processing

Graph Signal Processing

A graph signal
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Introduction Classical vs Graph signal Processing

Graph Signal Processing

Vertices: brain regions

Edges: structural connectivity between
brain regions

Signal: blood-oxygen-level-dependent
(BOLD) time series
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Introduction Applications

Graph Signal Processing Applications

Temperature/pressure recorded in a sensor network
Number of followers of each user in a social network
Traffic at each node in a road network
Traffic at each node in a computer network
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Introduction Applications

Geometric Scattering Trajectory Homology (GSTH)
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Introduction

Difficulty in GSP

Translation is simple in classical
signal processing
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What does it mean to translate the
signal to ‘vertex 50’?

Challenging in GSP
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Introduction

Need for Frequency
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Introduction

Need for Frequency
Classical Fourier transform provides the frequency domain
representation of signals

A notion of frequency for graph signals?
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We need Laplacian Matrix
Graph Signal Processing 13/76



Introduction Notation

Notation
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A graph signal f

Graph G = (V, W)

f =


2
3
4

−3
2



Weight matrix W =


0 1 1 0 0
1 0 1 1 1
1 1 0 1 0
0 1 1 0 1
0 1 0 1 0



Degree matrix D =


2 0 0 0 0
0 4 0 0 0
0 0 3 0 0
0 0 0 3 0
0 0 0 0 2


Laplacian matrix

L = D − W =


2 −1 −1 0 0

−1 4 −1 −1 −1
−1 −1 3 −1 0
0 −1 −1 3 −1
0 −1 0 −1 2


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Graph Laplacian

Graph Laplacian
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L =


2 −1 −1 0 0

−1 4 −1 −1 −1
−1 −1 3 −1 0
0 −1 −1 3 −1
0 −1 0 −1 2


Symmetric
Off-diagonal entries non-positive
Rows sum up to zero
Positive semi-definite
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Graph Laplacian

Multiplication by the Laplacian

Signal y = Lx results from multiplying x with the Laplacian

yi =
∑

j∈Ni wij(xi − xj)

Replaces xi by weighted average of difference with neighbors

Further Laplacian multiplications
L2x brings in features from 2-hop neighborhood

L3x brings in features from 3-hop neighborhood

Lkx brings in features from k-hop neighborhood

Graph Signal Processing 16/76



Graph Laplacian

Laplacian Quadratic Form

The Laplacian quadratic form of graph signal x is xT Lx

xT Lx = 1
2
∑

(i ,j)∈E
wij(xi − xj)2

xT Lx quantifies the local variation of signal x

Signals can be ordered depending on how much they vary

Will be used to order graph frequencies
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Eigenvalues and Eigenvectors

Eigenvectors and Eigenvalues

For a square matrix AN×N ,
Au = λu

u is an eigenvector

Scalar λ is the eigenvalue

N eigenvalues and N eigenvectors

For A =
[
2 1
0 −1

]
,

[
2 1
0 −1

] [
1
0

]
= (2)

[
1
0

]
and

[
2 1
0 −1

] [
1

−3

]
= (−1)

[
1

−3

]

λ = 2 and λ = −1 are eigenvalues.

u =
[

1
0

]
and u =

[
1

−3

]
are corresponding eigenvectors
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Graph Spectrum

Graph Spectrum

1 3

4

2

0.3 0.2
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L =


2 −1 −1 0 0

−1 3 −1 −1 0
−1 −1 3 −1 0
0 −1 −1 3 −1
0 0 0 −1 1



Eigenvalues (Graph Spectrum): {0, 0.8299, 2.6889, 4, 4.4812}

U = [u0|u1|u2|u3|u4] =


0.4472 0.4375 0.7031 0 0.3380
0.4472 0.2560 −0.2422 0.7071 −0.4193
0.4472 0.2560 −0.2422 −0.7071 −0.4193
0.4472 −0.1380 −0.5362 0 0.7024
0.4472 −0.8115 0.3175 0 −0.2018


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Comparison Classical vs Graph Signal Processing

Classical vs Graph Signal Processing

Operator/ Transform Classical Signal Processing Graph Signal Processing

Fourier Transform

x̂(ω) =
∫∞

−∞
x(t)e−jωt dt

Frequency: ω can take any value
Fourier basis: Complex exponentials
ejωt

f̂(λℓ) =
∑N

n=1
f (n)u∗

ℓ
(n)

Frequency: Eigenvalues of the graph
Laplacian (λℓ)
Fourier basis: Eigenvectors of the
graph Laplacian (uℓ)

Convolution

In time domain:
x(t)∗y(t) =

∫∞

−∞
x(τ)y(t −τ)dτ

In frequency domain:
̂x(t) ∗ y(t) = x̂(ω)ŷ(ω)

Defined through Graph Fourier
Transform

f̂ ∗ g =
(

f̂.ĝ
)

Translation
Can be defined using convolution
Tτ x(t) = x(t − τ) = x(t) ∗ δτ (t)

Defined through graph convolution
Ti f(n) =

√
N(f ∗ δi )(n)

=
√

N
∑N−1

ℓ=0
f̂ (λℓ)u∗

ℓ
(i)uℓ(n)

Modulation
Multiplication with the complex
exponential
Mωx(t) = ejωt x(t)

Multiplication with the eigenvector
of the graph Laplacian
Mk f(n) =

√
Nuk (n)f(n)
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Graph Fourier Transform

Graph Fourier Transform

Classical Signal Processing Graph Signal Processing

Fourier Transform

x̂(ω) =
∫∞

−∞
x(t)e−jωt dt

Frequency: ω can take any value
Fourier basis: Complex exponentials
ejωt

f̂(λℓ) =
∑N

n=1
f (n)u∗

ℓ
(n)

Frequency: Eigenvalues of the graph
Laplacian (λℓ)
Fourier basis: Eigenvectors of the
graph Laplacian (uℓ)

Graph Fourier Transform
Graph Fourier basis are Eigenfunctions of the Laplacian matrix
(operator)

Graph Frequencies: Eigenvalues of the Laplacian matrix L

Graph Harmonics: Eigenvectors of the Laplacian matrix L

L = UΛUT U = [u0|u1|u2| . . .]

GFT f̂ = UTf , IGFT f = Uf̂
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Graph Fourier Transform

Graph Signal in Two Domains

0 1 2 3 4 5 6 7 8 9

−2

0

2

λℓ

f̂
(λ

ℓ
)

GFT coefficients

Eigenvalues of graph Laplacian

A graph signal in vertex domain and spectral domain
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Graph Fourier Transform

Frequency Ordering

Use the Laplacian quadratic of u is uT Lu

uT
0 Lu0 =?

uT
1 Lu1 =?

uT
k Luk = λk

Small eigenvalues are low frequencies
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Graph Fourier Transform

Laplacian Eigenvectors as GFT Basis
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Effect of Vertex Indexing

.

Effect of Vertex Indexing on Graph Harmonics and Signal Representation!
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Effect of Vertex Indexing

Effect of Vertex Indexing

1 3

4

2

0.3 0.2

0.7

0.1

0.5

W =


0 0.3 0.1 0

0.3 0 0.2 0.5
0.1 0.2 0 0.7
0 0.5 0.7 0



L =


0.4 −0.3 −0.1 0

−0.3 1 −0.2 −0.5
−0.1 −0.2 1 −0.7

0 −0.5 −0.7 1.2


Frequencies λ: 0.0000, 0.4640, 1.2308, 1.9052

Harmonics U =


0.5000 0.8316 0.2185 0.1034
0.5000 −0.0494 −0.7942 −0.3417
0.5000 −0.3837 0.5669 −0.5305
0.5000 −0.3985 0.0088 0.7689


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Effect of Vertex Indexing

Effect of Vertex Indexing (cont’d. . . )

U =

0.5000 0.8316 0.2185 0.1034
0.5000 −0.0494 −0.7942 −0.3417
0.5000 −0.3837 0.5669 −0.5305
0.5000 −0.3985 0.0088 0.7689


1

2
3

4

u0

1

2
3

4

0.8316

-0.3837

-0.3985

u1

1

2
3

4

u2

1

2
3

4

u3
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Effect of Vertex Indexing

Effect of Vertex Indexing (cont’d. . . )

U =

0.5 0.8316 0.2185 0.1034
0.5 −0.0494 −0.7942 −0.3417
0.5 −0.3837 0.5669 −0.5305
0.5 −0.3985 0.0088 0.7689


Graph signal as linear combination of the Harmonics

1
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2

6
9

5

f1 = [5 2 6 9]T

f1 =

5
2
6
9

 = (11)

0.5
0.5
0.5
0.5

+ (−1.83)

 0.8316
−0.0494
−0.3837
−0.3985

+ (2.98)

 0.2185
−0.7942
0.5669
0.0088

+ (3.57)

 0.1034
−0.3417
−0.5305
0.7689


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Effect of Vertex Indexing

Effect of Vertex Indexing (cont’d. . . )
Case 1

1 3

4

2

0.3 0.2

0.7

0.1

0.5

L =

 0.4 −0.3 −0.1 0
−0.3 1 −0.2 −0.5
−0.1 −0.2 1 −0.7

0 −0.5 −0.7 1.2



Case 2

4

1

2

3

0.3 0.2

0.7

0.1

0.5

L =

 1 −0.2 −0.5 −0.3
−0.2 1 −0.7 −0.1
−0.5 −0.7 1.2 0
−0.3 −0.1 0 0.4


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Effect of Vertex Indexing

Effect of Vertex Indexing (cont’d. . . )
Case 1
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λ: 0, 0.4640, 1.2308, 1.9052

U =

0.5000 0.8316 0.2185 0.1034
0.5000 −0.0494 −0.7942 −0.3417
0.5000 −0.3837 0.5669 −0.5305
0.5000 −0.3985 0.0088 0.7689



Case 2
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λ: 0, 0.4640, 1.2308, 1.9052

U =

0.5000 −0.0494 −0.7942 −0.3417
0.5000 −0.3837 0.5669 −0.5305
0.5000 −0.3985 0.0088 0.7689
0.5000 0.8316 0.2185 0.1034


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Effect of Vertex Indexing

Effect of Vertex Indexing (cont’d. . . )
Case 1
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Effect of Vertex Indexing

Effect of Vertex Indexing (cont’d. . . )

f1 =

5
2
6
9

 = (11)

0.5
0.5
0.5
0.5

+ (−1.83)

 0.8316
−0.0494
−0.3837
−0.3985

+ (2.98)

 0.2185
−0.7942
0.5669
0.0088

+ (3.57)

 0.1034
−0.3417
−0.5305
0.7689



1

2
3

4

2

6
9

5

f1 = [5 2 6 9]T

4

1
2

3

2

6
9

5

f2 = [2 6 9 5]T

f2 =

2
6
9
5

 = (11)

0.5
0.5
0.5
0.5

+ (−1.83)

−0.0494
−0.3837
−0.3985
0.8316

+ (2.98)

−0.7942
0.5669
0.0088
0.2185

+ (3.57)

−0.3417
−0.5305
0.7689
0.1034


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Effect of Vertex Indexing

Effect of Vertex Indexing (cont’d. . . )
Case 1

1 3

4

2

0.3 0.2

0.7

0.1

0.5

L =

 0.4 −0.3 −0.1 0
−0.3 1 −0.2 −0.5
−0.1 −0.2 1 −0.7

0 −0.5 −0.7 1.2



Case 3

3

1

4

2

0.3 0.2

0.7

0.1

0.5

L =

 1 −0.5 −0.3 −0.2
−0.5 1.2 0 −0.7
−0.3 0 0.4 −0.1
−0.2 −0.7 −0.1 1


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Effect of Vertex Indexing

Effect of Vertex Indexing (cont’d. . . )
Case 1

1 3
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U =

0.5000 0.8316 0.2185 0.1034
0.5000 −0.0494 −0.7942 −0.3417
0.5000 −0.3837 0.5669 −0.5305
0.5000 −0.3985 0.0088 0.7689



Case 3
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Effect of Vertex Indexing

Effect of Vertex Indexing (cont’d. . . )
Case 1
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Effect of Vertex Indexing

Effect of Vertex Indexing (cont’d. . . )

f1 =

5
2
6
9

 = (11)

0.5
0.5
0.5
0.5

+ (−1.83)

 0.8316
−0.0494
−0.3837
−0.3985

+ (2.98)

 0.2185
−0.7942
0.5669
0.0088

+ (3.57)

 0.1034
−0.3417
−0.5305
0.7689



1

2
3

4

2

6
9

5

f1 = [5 2 6 9]T

3

1
4

2

2

6
9

5

f3 = [2 9 5 6]T

f3 =

2
9
5
6

 = (11)

0.5
0.5
0.5
0.5

+ (−1.83)

−0.0494
−0.3985
0.8316

−0.3837

+ (2.98)

−0.7942
0.0088
0.2185
0.5669

+ (3.57)

−0.3417
0.7689
0.1034

−0.5305


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Effect of Vertex Indexing

Effect of Vertex Indexing (cont’d. . . )

Change in vertex indexing

Alters signal representation in vertex domain: signal indexing
changes

No change in frequency domain representation of the signal (GFT
coefficients)
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Graph Convolution

Graph Convolution

1 3

4

2

5

L =


2 −1 −1 0 0

−1 3 −1 −1 0
−1 −1 3 −1 0
0 −1 −1 3 −1
0 0 0 −1 1



Eigenvalues: 0, 0.8299, 2.6889, 4, 4.4812

U =


0.4472 0.4375 0.7031 0 0.3380
0.4472 0.2560 −0.2422 0.7071 −0.4193
0.4472 0.2560 −0.2422 −0.7071 −0.4193
0.4472 −0.1380 −0.5362 0 0.7024
0.4472 −0.8115 0.3175 0 −0.2018


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Graph Convolution

Graph Convolution(cont’d. . . )

1

2
3

4 5

3

f = [3, 4, 6, 3, 1]T

1

2
3

4 5

4

g = [4, 2, 4, 2, 2]T

h = f ∗ g = IGFT(f̂.ĝ)

1

2
3

4 5

21.92

h = [21.92, 23.92, 21.08, 21.72, 17.80]T

Building block for graph neural networks (GNNs)
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Graph Convolution

Graph Translation

1

2
3

4 5

3

f = [3, 4, 6, 3, 1]T

Translation to node i :

Ti(f) =
√

N (f ∗ δi) =
√

N IGFT(f̂.UT (:, i))

1

2
3

4 5

2.44

T1f = [2.44, 5.08, 5.08, 3.72, 0.69]T

1

2
3

4 5

5.08

T2f = [5.08, 1.50, 4.66, 3.56, 2.21]T

1

2
3

4 5

3.72

T4f = [3.72, 3.56, 3.56, 1.08, 5.08]T
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Comparison Classical vs Graph Signal Processing

Classical vs Graph Signal Processing (Laplacian Based)

Operator/ Transform Classical Signal Processing Graph Signal Processing

Fourier Transform

x̂(ω) =
∫∞

−∞
x(t)e−jωt dt

Frequency: ω can take any value
Fourier basis: Complex exponentials
ejωt

f̂(λℓ) =
∑N

n=1
f(n)u∗

ℓ
(n)

Frequency: Eigenvalues of the graph
Laplacian (λℓ)
Fourier basis: Eigenvectors of the
graph Laplacian (uℓ)

Convolution

In time domain:
x(t)∗y(t) =

∫∞

−∞
x(τ)y(t −τ)dτ

In frequency domain:
̂x(t) ∗ y(t) = x̂(ω)ŷ(ω)

Defined through Graph Fourier
Transform

f̂ ∗ g =
(

f̂.ĝ
)

Translation
Can be defined using convolution
Tτ x(t) = x(t − τ) = x(t) ∗ δτ (t)

Defined through graph convolution
Ti f(n) =

√
N(f ∗ δi )(n)

=
√

N
∑N−1

ℓ=0
f̂ (λℓ)u∗

ℓ
(i)uℓ(n)

Modulation
Multiplication with the complex
exponential
Mωx(t) = ejωt x(t)

Multiplication with the eigenvector
of the graph Laplacian
Mk f(n) =

√
Nuk (n)f(n)
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Spectral Clustering

Spectral Clustering of Complex Networks

1

2

3

4

5

6

7

8

9

10

11
12

13
14

Network with four clusters

Spectral graph clustering algorithm
Can be used for community detection
Eigenvectors of the graph Laplacian for clustering
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Spectral Clustering of Complex Networks
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Spectral Clustering of Complex Networks
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Spectral Clustering

Spectral Clustering of Complex Networks1

1B.S. Manoj, A. Chakraborty, and R. Singh. Complex Networks: A Networking and Signal Processing
Perspective. Prentice Hall communications engineering and emerging technologies series. Prentice Hall, 2018.
isbn: 9780134786995.
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Application

Example Application
Sensor Malfunction Detection

Temperature on a graph and its spectrum

True signal and Corrupted signal after HPF

Graph Signal Processing 47/76



GFT Limitations

(Graph) Fourier Transform Limitations

Different in time but same frequency representation!

(Graph) Fourier Transform only gives “what” frequency
components are present

Cannot tell at what time (where in graph) the frequency
components are present

Simultaneous time frequency representation: wavelets
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Wavelets

Classical Wavelets

Wavelet: a small wave

Ability to provide time-frequency representation
simultaneously
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Wavelets

Classical Wavelets Cont’d
Wavelets at different “shifts” and “scales”
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Wavelets

Classical Wavelets Cont’d
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Graph Wavelets SGWT

Spectral Graph Wavelet Transform

Classical wavelets
Wavelets at different scales and locations are constructed by scaling
and translating a single “mother” wavelet ψ
ψs,a(x) = 1

sψ
( x−a

s

)
Scaling in Fourier domain ψs,a(x) = 1

2π

∫∞
−∞ ejωx ψ̂(sω)e−jωadω

Scaling ψ by 1/s corresponds to scaling ψ̂ with s
Term e−jωa comes from localization of the wavelet at location a

Spectral Graph Wavelets
Graph wavelet at scale t and centered at node n

ψt,n(m) =
N−1∑
ℓ=0

uℓ(m)g(tλℓ)u∗
ℓ (n)

Frequency ω is replaced with eigenvalues of graph Laplacian λℓ

Translating to node n corresponds to multiplication by u∗
ℓ (n)

g acts as a scaled bandpass filter, replacing ψ̂
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Graph Wavelets SGWT

Matrix Form of SGWT2

Wavelet basis at scale t = collection of N number of wavelets
(each wavelet centered at a particular node of the graph)

Ψt = [ψt,1|ψt,2| . . . |ψt,N ] = UGtUT

Wavelet coefficient at scale t and centered at node n of a
graph signal f

Wf (t, n) = ⟨ψt,n, f⟩ = ψT
t,nf

2B.S. Manoj, A. Chakraborty, and R. Singh. Complex Networks: A Networking and Signal Processing
Perspective. Prentice Hall communications engineering and emerging technologies series. Prentice Hall, 2018.
isbn: 9780134786995.
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Graph Wavelets SGWT

SGWT Example
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Re(λℓ)Im(λℓ)

Kernel at scale t = 1.4736

 

 

−0.02 0 0.02

Wavelet at scale t = 19.8244
 

 

−0.15 0 0.15

Wavelet at scale t = 7.3034
 

 

−0.4 0 0.4

Wavelet at scale t = 2.6906

Ψt = [ψt,1|ψt,2| . . . |ψt,N ] = V


g(tλ0)

g(tλ1)
. . .

g(tλN−1)

V−1 = VGtV−1
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Spectral Filtering

Classical vs Graph Spectral Filtering

Classical Signal Processing Graph Signal Processing

Fourier Transform

f̂ (ω) =
∫∞

−∞
f (t)e−jωt dt

Frequency: ω can take any value
Fourier basis: Complex exponentials
ejωt

f̂(λℓ) =
∑N

n=1
f (n)u∗

ℓ
(n)

Frequency: Eigenvalues of the graph
Laplacian (λℓ)
Fourier basis: Eigenvectors of the
graph Laplacian (uℓ)

Replace ω by λℓ in graph spectral filtering
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GSP Frameworks

Existing Graph Signal Processing (GSP) Frameworks

Discrete Signal Processing on Graphs (DSPG) framework

GSP based on Laplacian
DSPG Framework

Based on Weight
Matrix

Based on Directed
Laplacian

Shift Op-
erator

Not defined The weight matrix W Derived from directed
Laplacian (I − L)

LSI Filters Not applicable Applicable Applicable

Applicability Only undirected graphs Directed graphs Directed graphs

Frequencies Eigenvalues of the
Laplacian (real)

Eigenvalues of the
weight matrix

Eigenvalues of the di-
rected Laplacian

Harmonics Eigenvectors of the
Laplacian matrix (real)

Eigenvectors of the
weight matrix

Eigenvectors of the
directed Laplacian

Frequency
Ordering

Laplacian quadratic
form (natural)

Total variation
(not natural)

Total variation
(natural)
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DSPG Framework

Discrete Signal Processing on Graphs (DSPG) Framework

Shift Operator

LSI Filters

Total Variation

Graph Fourier
Transform

Graph Frequencies

Graph Harmonics

Frequency
Ordering

Graph harmonics
are eigenfunctions
of LSI filters

Total Variation is
used for frequency
ordering

Concepts in the DSPG framework
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DSPG Framework Weight Matrix

DSPG Framework: Weight Matrix

Shift operator
Weight matrix W of the graph

Shifted graph signal f̃ = Wf

Example: shifting discrete-time
signal (one unit right)

1 2 3 4 5

x = [9, 7, 5, 0, 6]T

x̃ = Wx =


0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0




9
7
5
0
6

 =


6
9
7
5
0



H
fin fout = Hf in

A linear graph filter

Linear Shift Invariant (LSI) filters
H(Wf in) = W(Hf in)

Polynomials in W

H = h(W) =
M−1∑
m=0

hmWm

= h0I + h1W + . . . + hM−1WM−1
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DSPG Framework Weight Matrix

DSPG Framework: Weight Matrix

Analogy from classical signal processing
Classical Fourier basis: Complex exponentials

Complex exponentials are Eigenfunctions of Linear Time Invariant
(LTI) filters

Graph Fourier Transform
Graph Fourier basis are Eigenfunctions of Linear Shift Invariant
(LSI) graph filters

Graph Frequencies: Eigenvalues of the weight matrix W

Graph Harmonics: Eigenvectors of the weight matrix W

W = VΣV−1

GFT f̂ = V−1f , IGFT f = V−1 f̂

Graph Signal Processing 59/76



DSPG Framework Weight Matrix

DSPG Framework: Weight Matrix
Total Variation in classical signal processing

TV(x) =
∑

n x [n] − x [n − 1] = ||x − x̃||1 , where x̃ [n] = x [n − 1]

Analogy from classical signal processing

Total Variation on graphs TVG(f) = ||f − f̃||1 = ||f − Wf||1

Frequency ordering: Based on Total
Variation
Eigenvalue with largest magnitude:
Lowest frquency

Re

Im

σN−1
|σmax|−|σmax|

σ1

σ2
σ0

LFHF
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DSPG Framework Weight Matrix

Problems in Weight Matrix based DSPG

Re

Im

σN−1
|σmax|−|σmax|

σ1

σ2
σ0

LFHF

Constant graph signal

1
2

3

4

5

1
1

1

1

1

Graph frequencies:
-1.62, -1.47, -0.46, 0.62, 2.94

f̂ =


0

0.36
0.16

0
2.20



Weight matrix based DSPG

Does not provide “natural” frequency ordering

Even a constant signal has high frequency components
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DSPG Framework Directed Laplacian

Graph Fourier Transform based on Directed Laplacian3

Redefines Graph Fourier Transform under DSPG

Shift operator: Derived from directed Laplacian
Linear Shift Invariant filters: Polynomials in the directed Laplacian
Graph frequencies: Eigenvalues of the directed Laplacian
Graph harmonics: Eigenvectors of the directed Laplacian

“Natural” frequency ordering

Better intuition of frequency as compared to the weight
matrix based approach

Coincides with the Laplacian based approach for undirected
graphs

3Rahul Singh, Abhishek Chakraborty, and BS Manoj. “Graph Fourier transform based on directed Laplacian”.
In: 2016 International Conference on Signal Processing and Communications (SPCOM). IEEE. 2016, pp. 1–5.
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DSPG Framework Directed Laplacian

Directed Laplacian Matrix

Basic matrices of a directed graph
Weight matrix: W

wij is the weight of the directed edge from node j to node i

In-degree matrix: Din = diag({d in
i }i=1,2,...,N), d in

i =
∑N

j=1 wij

Out-degree matrix: Dout = diag({dout
i }i=1,2,...,N), dout

i =
∑N

i=1 wij

Directed Laplacian matrix L = Din − W
Sum of each row is zero
λ = 0 is surely an eigenvalue

1

2

3

4

1

1

11

1

1

1

A directed graph

W =

[
0 0 0 1
1 0 1 1
1 1 0 0
1 0 0 0

]
Weight matrix

Din =

[
1 0 0 0
0 3 0 0
0 0 2 0
0 0 0 1

]
In-degree matrix

L =

[
1 0 0 −1

−1 3 −1 −1
−1 −1 2 0
−1 0 0 1

]
Directed Laplacian matrix
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DSPG Framework Shift Operator

Shift Operator

1 2 3 4 5

A directed cyclic (ring) graph

L =


1 0 0 0 −1

−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1


Laplacian matrix

A signal x = [9 7 1 0 6]T ; shifted by one unit to the right x̃ = [6 9 7 1 0]T

x̃ = Sx = (I − L)x =


0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0




9
7
1
0
6

 =


6
9
7
1
0


S = (I − L) is the shift operator

Shifted graph signal: f̃ = Sf = (I − L)f
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DSPG Framework LSI Filters

LSI Filters

H
fin fout = Hf in

A linear graph filter

Linear Shift-Invariant (LSI) filter: S(fout) = H(Sfin)

Theorem
A graph filter H is LSI if the following conditions are satisfied.

1 Geometric multiplicity of each distinct eigenvalue of the graph
Laplacian is one.

2 The graph filter H is a polynomial in L, i.e., if H can be written as

H = h(L) = h0I + h1L + . . . + hmLm

where, h0, h1, . . . , hm ∈ C are called filter taps.
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DSPG Framework Graph Frequencies and Harmonics

Graph Fourier Transform based on Directed Laplacian

Jordan decomposition of the directed Laplacian: L = VJV−1

Graph Fourier basis: Columns of V (Jordan Eigenvectors of L)

Graph frequencies: Eigenvalues of L (diagonal entries of Jordan
blocks in J)

GFT f̂ = V−1f and IGFT: f = Vf̂

Frequency Ordering: based on Total Variation

Total Variation: TVG(f) = ||f − Sf||1 = ||f − (I − L)f||1
TVG(f) = ||Lf||1

Theorem
TV of an eigenvector vr is proportional to the absolute value of the
corresponding eigenvalue

TV(vr ) ∝ |λr |
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DSPG Framework Frequency Ordering

Frequency Ordering

Re

Im

λ0 λ1

λ2

λ3

λN−1

λN−2

LF
HF

HF

Arbitrary graph

Re

Im

λ0 λ1

λ2

λ3

λN−1

λN−2

LF HF

Graph with positive edge weights

Re

Im

λ0λ1λN−1 λN−2

LF
HFHF

Undirected graph with real edge weights.

Re

Im

λ0 λ1 λN−1λN−2

LF
HF

Undirected graph with real and
non-negative edge weights.
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DSPG Framework Examples

Example

Graph signal f = [0.1189 0.3801 0.8128 0.2441 0.8844]T defined on
the directed graph
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A weighted directed graph 0
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|

High frequency component

Equal TV

Low frequency component

Spectrum of the signal f = [0.1189 0.3801 0.8128 0.2441 0.8844]T
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DSPG Framework Examples

Example
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DSPG Framework Examples

Example: Zero Frequency

Eigenvector corresponding to λ0 is v0 = 1√
N [1, 1, . . . 1]T

TV of v0 is zero
For a constant graph signal f = [k, k, . . .]T , GFT is f̂ = [(k

√
N), 0, . . .]T

Only zero frequency component

The weight matrix based approach of GFT fails to give this basic
intuition
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Only zero frequency component

Spectrum of the constant signal f = [1 1 1 1 1]T
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DSPG Framework Examples

Example: Zero Frequency
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DSPG Framework Comparison

Comparison of the GSP Frameworks

GSP based on Laplacian
DSPG Framework

Based on Weight
Matrix

Based on Directed
Laplacian

Shift Op-
erator

Not defined The weight matrix W Derived from directed
Laplacian (I − L)

LSI Filters Not applicable Applicable Applicable

Applicability Only undirected graphs Directed graphs Directed graphs

Frequencies Eigenvalues of the
Laplacian (real)

Eigenvalues of the
weight matrix

Eigenvalues of the di-
rected Laplacian

Harmonics Eigenvectors of the
Laplacian matrix (real)

Eigenvectors of the
weight matrix

Eigenvectors of the
directed Laplacian

Frequency
Ordering

Laplacian quadratic
form (natural)

Total variation
(not natural)

Total variation
(natural)
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Conclusions

Filtering in Spectral Domain
x ∈ RN be a single-channel input signal on the graph

Graph convolution of the input graph signal x with a filter g is

x ∗ g := U
(
(UT x) ⊙ (UT g)

)
= UĜUT x,

Ĝ := diag(ĝ) = diag{ĝ1, . . . , ĝN}

Spectral-GNN4 learn all the filter coefficients (expensive)

Approximate via K th order polynomials of the graph
frequencies (K << N)

ĝ(λj) =
∑K

i=0 θiλ
i
j , θ ∈ RK+1 are filter coefficients

x ∗ g ≈ U
( K∑

i=0
θiΛi

)
UT x =

K∑
i=0

θiLi
nx.

4Joan Bruna et al. “Spectral networks and deep locally connected networks on graphs”. In: 2nd International
Conference on Learning Representations, ICLR. 2014.
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Conclusions

Spectral Graph Neural Networks5

1

2 3

4 1

2 3

4 1

2 3

4

1

2 3

4
Predict
node class

1

2 3

4

Predict
link sign

Input graph and features

H(0) = X

Spectral-Signed-GCN

Spectral Filtering

H̄(ℓ) = PH(ℓ−1)

Feature Transformation
+ Non-linearity

H(ℓ) = σ
(
H̄(ℓ) Θ(ℓ)

)

ℓ = 1 : L
Predictions

The spectral GNN filters and transforms the features repeatedly throughout L layers
and then applies a linear prediction.

5Rahul Singh and Yongxin Chen. “Signed Graph Neural Networks: A Frequency Perspective”. In: Transactions
on Machine Learning Research (2023). issn: 2835-8856. url: https://openreview.net/forum?id=RZveYHgZbu.
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Conclusions

GCN6

First order polynomial filter (K = 1) with θ0 = 2θ and
θ1 = −θ

x ∗ g ≈ θ (2I − Ln) x = θ (I + D−1/2AD−1/2) x

With self-loop Ã = A + I and D̃ = D + I

x ∗ g ≈ θ (D̃−1/2ÃD̃−1/2) x

6Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with Graph Convolutional Networks”. In:
International Conference on Learning Representations (ICLR). 2017.
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Conclusions

Graph Neural Networks

GNNs learn latent node representations via
Feature Aggregation and Feature Transformation

Vanilla GCN: ℓth layer reads

H(ℓ) = σ
(
P H(ℓ−1) Θ(ℓ)

)
H(0) = X, P = D̃−1/2ÃD̃−1/2 is the low-pass feature aggregation
filter, Θ(ℓ) is a learnable transformation matrix
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Conclusions

Takeaways

Introduction to Graph Signal Processing (GSP)

Graph Fourier Transform
Laplacian Eigenvalues as graph frequencies

Laplacian eigenvectors as graph Fourier basis

Graph wavelets
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