Rahul Singh



Sep 8, 2024





Next 90  $\pm$  ? minutes: signals processing over graphs

#### About me

- Signal Processing, Indian Institute of Space Science and Technology (graphs, Fourier, wavelets)
- Electrical Engineering, Iowa State University (Image Processing)
- Machine Learning, Georgia Tech (using structure in data)
- Wu Tsai Postdoctoral Fellow, Yale (Computational Neuroscience)
  - Mentors: Smita Krishnaswamy and Joy Hirsch

INTRODUCTION Classical vs Graph signal Processing

### **Classical Signal Processing**







Structure behind time-series (speech, EEG, fMRI,...)

INTRODUCTION Classical vs Graph signal Processing

### **Classical Signal Processing**



Structure behind time-series (speech, EEG, fMRI,...)

Structure behind image

### **Classical Signal Processing**

 Translation, filtering, convolution, modulation, Fourier transform, sampling ...







Structure behind time-series (speech, EEG, fMRI,...)

Structure behind image

### Classical Signal Processing: Modulation



Modulation is used to change the frequency band of a signal

- Enables RF communication in different frequency bands
- Used in cell phones, AM/FM radio, WLAN, cable TV, ...
- Higher frequencies lead to smaller antennas

## Classical Signal Processing: Filtering



- Filtering is used to remove undesired signals outside of the frequency band of interest
  - Enables selection of a specific radio, TV, WLAN, cell phone, cable TV
  - Also fundamental for denoising, smoothing, etc.

INTRODUCTION Classical vs Graph signal Processing

### **Classical Signal Processing**







Structure behind time-series (speech, EEG, fMRI,...)

INTRODUCTION Classical vs Graph signal Processing

### **Classical Signal Processing**



Structure behind time-series (speech, EEG, fMRI,...)

Structure behind image

## **Classical Signal Processing**

 Translation, filtering, convolution, modulation, Fourier transform, sampling ...







Structure behind time-series (speech, EEG, fMRI,...)

Structure behind image

















A graph signal







- Vertices: brain regions
- Edges: structural connectivity between brain regions
- Signal: blood-oxygen-level-dependent (BOLD) time series

## Graph Signal Processing Applications





- Temperature/pressure recorded in a sensor network
- Number of followers of each user in a social network
- Traffic at each node in a road network
- Traffic at each node in a computer network

INTRODUCTION Applications









 Translation is simple in classical signal processing



# Difficulty in GSP



 Translation is simple in classical signal processing



- What does it mean to translate the signal to 'vertex 50'?
- Challenging in GSP



INTRODUCTION

### Need for Frequency



INTRODUCTION

## Need for Frequency



 Classical Fourier transform provides the frequency domain representation of signals



A notion of frequency for graph signals?



### We need Laplacian Matrix







## Graph Laplacian







- Symmetric
- Off-diagonal entries non-positive
- Rows sum up to zero
- Positive semi-definite

## Multiplication by the Laplacian



• 
$$y_i = \sum_{j \in \mathcal{N}_i} w_{ij}(x_i - x_j)$$

- Replaces x<sub>i</sub> by weighted average of difference with neighbors
- Further Laplacian multiplications
  - **L**<sup>2</sup>**x** brings in features from 2-hop neighborhood
  - L<sup>3</sup>x brings in features from 3-hop neighborhood
  - L<sup>k</sup>x brings in features from k-hop neighborhood



## Laplacian Quadratic Form



The Laplacian quadratic form of graph signal x is x<sup>T</sup>Lx

$$\mathbf{x}^T \mathbf{L} \mathbf{x} = \frac{1}{2} \sum_{(i,j) \in \mathcal{E}} w_{ij} (x_i - x_j)^2$$

- **\mathbf{x}^T \mathbf{L} \mathbf{x}** quantifies the local variation of signal  $\mathbf{x}$ 
  - Signals can be ordered depending on how much they vary
  - Will be used to order graph frequencies

EIGENVALUES AND EIGENVECTORS

## Eigenvectors and Eigenvalues

- For a square matrix **A**<sub>N×N</sub>,
  - $Au = \lambda u$
  - **u** is an eigenvector
  - Scalar  $\lambda$  is the eigenvalue
- N eigenvalues and N eigenvectors

• For 
$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 0 & -1 \end{bmatrix}$$
,  
 $\begin{bmatrix} 2 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = (2) \begin{bmatrix} 1 \\ 0 \end{bmatrix}$  and  $\begin{bmatrix} 2 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \end{bmatrix} = (-1) \begin{bmatrix} 1 \\ -3 \end{bmatrix}$   
•  $\lambda = 2$  and  $\lambda = -1$  are eigenvalues.  
•  $\mathbf{u} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$  and  $\mathbf{u} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$  are corresponding eigenvectors

-1

0

-1

3.

-1

-2 -

-1

Graph Spectrum

### Graph Spectrum



Eigenvalues (Graph Spectrum): {0, 0.8299, 2.6889, 4, 4.4812}

$$\mathbf{U} = [\mathbf{u}_0 | \mathbf{u}_1 | \mathbf{u}_2 | \mathbf{u}_3 | \mathbf{u}_4] = \begin{bmatrix} 0.4472 & 0.4375 & 0.7031 & 0 & 0.3380 \\ 0.4472 & 0.2560 & -0.2422 & 0.7071 & -0.4193 \\ 0.4472 & 0.2560 & -0.2422 & -0.7071 & -0.4193 \\ 0.4472 & -0.1380 & -0.5362 & 0 & 0.7024 \\ 0.4472 & -0.8115 & 0.3175 & 0 & -0.2018 \end{bmatrix}$$

### Classical vs Graph Signal Processing



| Operator/ Transform | Classical Signal Processing                                                                                                                                                | Graph Signal Processing                                                                                                                                                                                                                                 |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fourier Transform   | • $\hat{x}(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$<br>• Frequency: $\omega$ can take any value<br>• Fourier basis: Complex exponentials<br>$e^{j\omega t}$ | <ul> <li>f̂(λ<sub>ℓ</sub>) = ∑<sup>N</sup><sub>n=1</sub> f(n)u<sup>*</sup><sub>ℓ</sub>(n)</li> <li>Frequency: Eigenvalues of the graph Laplacian (λ<sub>ℓ</sub>)</li> <li>Fourier basis: Eigenvectors of the graph Laplacian (u<sub>ℓ</sub>)</li> </ul> |
| Convolution         | In time domain:<br>$x(t)*y(t) = \int_{-\infty}^{\infty} x(\tau)y(t-\tau)d\tau$ In frequency domain:<br>$x(t)*y(t) = \hat{x}(\omega)\hat{y}(\omega)$                        | <ul> <li>Defined through Graph Fourier<br/>Transform</li> <li>f * g = (f, ĝ)</li> </ul>                                                                                                                                                                 |
| Translation         | Can be defined using convolution<br>$T_{\tau}x(t) = x(t - \tau) = x(t) * \delta_{\tau}(t)$                                                                                 | Defined through graph convolution <b>T</b> <sub>i</sub> f(n) = $\sqrt{N}(f * \delta_i)(n)$ $= \sqrt{N} \sum_{\ell=0}^{N-1} \hat{f}(\lambda_\ell) u_\ell^*(i) u_\ell(n)$                                                                                 |
| Modulation          | <ul> <li>Multiplication with the complex exponential</li> <li>M<sub>w</sub>x(t) = e<sup>jωt</sup>x(t)</li> </ul>                                                           | <ul> <li>Multiplication with the eigenvector of the graph Laplacian</li> <li>M<sub>k</sub>f(n) = \sqrt{Nu}_k(n)f(n)</li> </ul>                                                                                                                          |

## Graph Fourier Transform



|                   | Classical Signal Processing                                                                                                                                                | Graph Signal Processing                                                                                                                                                                                                                                |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fourier Transform | • $\hat{x}(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$<br>• Frequency: $\omega$ can take any value<br>• Fourier basis: Complex exponentials<br>$e^{j\omega t}$ | <ul> <li>Î(λ<sub>ℓ</sub>) = ∑<sup>N</sup><sub>n=1</sub> f(n)u<sup>*</sup><sub>ℓ</sub>(n)</li> <li>Frequency: Eigenvalues of the graph Laplacian (λ<sub>ℓ</sub>)</li> <li>Fourier basis: Eigenvectors of the graph Laplacian (u<sub>ℓ</sub>)</li> </ul> |

- Graph Fourier Transform
  - Graph Fourier basis are Eigenfunctions of the Laplacian matrix (operator)
  - Graph Frequencies: Eigenvalues of the Laplacian matrix L
  - Graph Harmonics: Eigenvectors of the Laplacian matrix L

$$\mathbf{L} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathsf{T}} \qquad \mathbf{U} = [\mathbf{u}_0 | \mathbf{u}_1 | \mathbf{u}_2 | \dots]$$

• GFT 
$$\hat{\mathbf{f}} = \mathbf{U}^{\mathsf{T}}\mathbf{f}$$
, IGFT  $\mathbf{f} = \mathbf{U}\hat{\mathbf{f}}$ 

GRAPH FOURIER TRANSFORM

## Graph Signal in Two Domains



A graph signal in vertex domain and spectral domain

## Frequency Ordering



- Use the Laplacian quadratic of  $\mathbf{u}$  is  $\mathbf{u}^T \mathbf{L} \mathbf{u}$
- $\mathbf{u}_0^T \mathbf{L} \mathbf{u}_0 = ?$
- $\mathbf{u}_1^T \mathbf{L} \mathbf{u}_1 = ?$

# Frequency Ordering



- Use the Laplacian quadratic of  $\mathbf{u}$  is  $\mathbf{u}^T \mathbf{L} \mathbf{u}$
- $\mathbf{u}_0^T \mathbf{L} \mathbf{u}_0 = ?$
- $\bullet \mathbf{u}_1^T \mathbf{L} \mathbf{u}_1 = ?$
- $\mathbf{u}_k^T \mathbf{L} \mathbf{u}_k = \lambda_k$
- Small eigenvalues are low frequencies

GRAPH FOURIER TRANSFORM

### Laplacian Eigenvectors as GFT Basis









EFFECT OF VERTEX INDEXING



#### Effect of Vertex Indexing on Graph Harmonics and Signal Representation!

.

Effect of Vertex Indexing

### Effect of Vertex Indexing





Frequencies  $\lambda$ : 0.0000, 0.4640, 1.2308, 1.9052

Harmonics 
$$\mathbf{U} = \begin{bmatrix} 0.5000 & 0.8316 & 0.2185 & 0.1034 \\ 0.5000 & -0.0494 & -0.7942 & -0.3417 \\ 0.5000 & -0.3837 & 0.5669 & -0.5305 \\ 0.5000 & -0.3985 & 0.0088 & 0.7689 \end{bmatrix}$$

Effect of Vertex Indexing

### Effect of Vertex Indexing (cont'd...)







3



Effect of Vertex Indexing

### Effect of Vertex Indexing (cont'd...)





Graph signal as linear combination of the Harmonics



 $f_1 = [5 \ 2 \ 6 \ 9]^T$ 

$$\mathbf{f_1} = \begin{bmatrix} 5\\2\\6\\9 \end{bmatrix} = (11) \begin{bmatrix} 0.5\\0.5\\0.5\\0.5 \end{bmatrix} + (-1.83) \begin{bmatrix} 0.8316\\-0.0494\\-0.3837\\-0.3985 \end{bmatrix} + (2.98) \begin{bmatrix} 0.2185\\-0.7942\\0.5669\\0.0088 \end{bmatrix} + (3.57) \begin{bmatrix} 0.1034\\-0.3417\\-0.5305\\0.7689 \end{bmatrix}$$
## Effect of Vertex Indexing (cont'd...)



2











Effect of Vertex Indexing (cont'd...)



$$\mathbf{f_1} = \begin{bmatrix} 5\\2\\6\\9 \end{bmatrix} = (\mathbf{11}) \begin{bmatrix} 0.5\\0.5\\0.5\\0.5 \end{bmatrix} + (-\mathbf{1.83}) \begin{bmatrix} 0.8316\\-0.0494\\-0.3837\\-0.3985 \end{bmatrix} + (\mathbf{2.98}) \begin{bmatrix} 0.2185\\-0.7942\\0.5669\\0.0088 \end{bmatrix} + (\mathbf{3.57}) \begin{bmatrix} 0.1034\\-0.3417\\-0.5305\\0.7689 \end{bmatrix}$$

$$\mathbf{f_1} = \begin{bmatrix} 5 \ 2 \ 6 \ 9 \end{bmatrix}^T$$

$$\mathbf{f_2} = \begin{bmatrix} 2\\6\\9\\5 \end{bmatrix} = (\mathbf{11}) \begin{bmatrix} 0.5\\0.5\\0.5\\0.5 \end{bmatrix} + (-\mathbf{1.83}) \begin{bmatrix} -0.0494\\-0.3837\\-0.3985\\0.8316 \end{bmatrix} + (\mathbf{2.98}) \begin{bmatrix} -0.7942\\0.5669\\0.0088\\0.2185 \end{bmatrix} + (\mathbf{3.57}) \begin{bmatrix} -0.3417\\-0.5305\\0.7689\\0.0384\\0.1034 \end{bmatrix}$$

Graph Signal Processing













Effect of Vertex Indexing (cont'd...)



$$\mathbf{f}_{1} = \begin{bmatrix} 5\\2\\6\\9 \end{bmatrix} = (\mathbf{11}) \begin{bmatrix} 0.5\\0.5\\0.5\\0.5 \end{bmatrix} + (-\mathbf{1.83}) \begin{bmatrix} 0.8316\\-0.0494\\-0.3837\\-0.3985 \end{bmatrix} + (\mathbf{2.98}) \begin{bmatrix} 0.2185\\-0.7942\\0.5669\\0.0088 \end{bmatrix} + (\mathbf{3.57}) \begin{bmatrix} 0.1034\\-0.3417\\-0.5305\\0.7689 \end{bmatrix}$$

$$\mathbf{f}_{1} = [5\ 2\ 6\ 9]^{T}$$

$$\mathbf{f}_{3} = \begin{bmatrix} 2\\9\\5\\6 \end{bmatrix} = (\mathbf{11}) \begin{bmatrix} 0.5\\0.5\\0.5\\0.5 \end{bmatrix} + (-\mathbf{1.83}) \begin{bmatrix} -0.0494\\-0.3985\\0.8316\\-0.3837 \end{bmatrix} + (\mathbf{2.98}) \begin{bmatrix} -0.7942\\0.0088\\0.2185\\0.5669 \end{bmatrix} + (\mathbf{3.57}) \begin{bmatrix} -0.3417\\0.7689\\0.1034\\-0.5305 \end{bmatrix}$$

Graph Signal Processing



- Change in vertex indexing
  - Alters signal representation in vertex domain: signal indexing changes
  - No change in frequency domain representation of the signal (GFT coefficients)

GRAPH CONVOLUTION

# Graph Convolution



Eigenvalues: 0, 0.8299, 2.6889, 4, 4.4812

$$\mathbf{U} = \begin{bmatrix} 0.4472 & 0.4375 & 0.7031 & 0 & 0.3380 \\ 0.4472 & 0.2560 & -0.2422 & 0.7071 & -0.4193 \\ 0.4472 & 0.2560 & -0.2422 & -0.7071 & -0.4193 \\ 0.4472 & -0.1380 & -0.5362 & 0 & 0.7024 \\ 0.4472 & -0.8115 & 0.3175 & 0 & -0.2018 \end{bmatrix}$$

GRAPH CONVOLUTION

# Graph Convolution(cont'd...)





Building block for graph neural networks (GNNs)

GRAPH CONVOLUTION

# Graph Translation





#### Classical vs Graph Signal Processing (Laplacian Based)



| Operator/ Transform | Classical Signal Processing Graph Signal Processing                                                                                                                        |                                                                                                                                                                                                                                                        |  |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Fourier Transform   | • $\hat{x}(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$<br>• Frequency: $\omega$ can take any value<br>• Fourier basis: Complex exponentials<br>$e^{j\omega t}$ | <ul> <li>f(λ<sub>ℓ</sub>) = ∑<sup>N</sup><sub>n=1</sub> f(n)u<sup>*</sup><sub>ℓ</sub>(n)</li> <li>Frequency: Eigenvalues of the graph Laplacian (λ<sub>ℓ</sub>)</li> <li>Fourier basis: Eigenvectors of the graph Laplacian (u<sub>ℓ</sub>)</li> </ul> |  |
| Convolution         | In time domain: $x(t)*y(t) = \int_{-\infty}^{\infty} x(\tau)y(t-\tau)d\tau$ In frequency domain: $x(\widehat{t})*y(t) = \widehat{x}(\omega)\widehat{y}(\omega)$            | <ul> <li>Defined through Graph Fourier<br/>Transform</li> <li>f * g = (f.g)</li> </ul>                                                                                                                                                                 |  |
| Translation         | Can be defined using convolution<br>$T_{\tau}x(t) = x(t - \tau) = x(t) * \delta_{\tau}(t)$                                                                                 | Defined through graph convolution<br>$T_i f(n) = \sqrt{N} (f * \delta_i)(n)$ $= \sqrt{N} \sum_{\ell=0}^{N-1} \hat{f}(\lambda_\ell) u_\ell^*(i) u_\ell(n)$                                                                                              |  |
| Modulation          | <ul> <li>Multiplication with the complex exponential</li> <li>M<sub>ω</sub> x(t) = e<sup>jωt</sup>x(t)</li> </ul>                                                          | <ul> <li>Multiplication with the eigenvector of the graph Laplacian</li> <li>M<sub>k</sub>f(n) = \sqrt{Nu}_k(n)f(n)</li> </ul>                                                                                                                         |  |







Network with four clusters

- Spectral graph clustering algorithm
- Can be used for community detection
- Eigenvectors of the graph Laplacian for clustering





#### Spectral Clustering of Complex Networks







Graph Signal Processing







#### Spectral Clustering of Complex Networks<sup>1</sup>



#### Algorithm 8.1 Algorithm for Spectral Graph Clustering

- 1: Compute the graph Laplacian L = D W.
- 2: Compute the first *k* eigenvectors  $\mathbf{u}_0$ ,  $\mathbf{u}_1$ , ...,  $\mathbf{u}_{k-1}$  of **L**.
- 3: Create the matrix  $\mathbf{U}_k = [\mathbf{u}_0 | \mathbf{u}_1 | \dots \mathbf{u}_{k-1}]$  whose columns are the *k* eigenvectors of *L*.
- 4: Let  $\mathbf{z}_i \in \mathbb{R}^k$  be the  $i^{t\hat{h}}$  row of  $\mathbf{U}_k$ .
- 5: Cluster the *N* points  $\{z_i\}_{i=1, 2, ..., N}$  into *k* clusters with k-means or any other algorithm.
- 6: Assign the node  $v_i$  to cluster *j* if and only if point  $\mathbf{z}_i$  was assigned to cluster *j*.

<sup>&</sup>lt;sup>1</sup>B.S. Manoj, A. Chakraborty, and R. Singh. *Complex Networks: A Networking and Signal Processing Perspective*. Prentice Hall communications engineering and emerging technologies series. Prentice Hall, 2018. ISBN: 9780134786995.

Application

# Example Application





Temperature on a graph and its spectrum



True signal and Corrupted signal after HPF



GFT LIMITATIONS

# (Graph) Fourier Transform Limitations





- Different in time but same frequency representation!
- (Graph) Fourier Transform only gives "what" frequency components are present
- Cannot tell at what time (where in graph) the frequency components are present
- Simultaneous time frequency representation: wavelets

WAVELETS

#### **Classical Wavelets**

- Wavelet: a small wave
- Ability to provide time-frequency representation simultaneously



WAVELETS

#### Classical Wavelets Cont'd

Wavelets at different "shifts" and "scales"









WAVELETS

### Classical Wavelets Cont'd





# Spectral Graph Wavelet Transform

#### Classical wavelets

Wavelets at different scales and locations are constructed by scaling and translating a single "mother" wavelet  $\psi$ 

$$\psi_{s,a}(x) = \frac{1}{s}\psi\left(\frac{x-a}{s}\right)$$

Scaling in Fourier domain  $\psi_{s,a}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{j\omega x} \hat{\psi}(s\omega) e^{-j\omega a} d\omega$ 

- Scaling  $\psi$  by 1/s corresponds to scaling  $\hat{\psi}$  with s
- Term  $e^{-j\omega a}$  comes from localization of the wavelet at location a

#### Spectral Graph Wavelets

Graph wavelet at scale t and centered at node n

$$\psi_{t,n}(m) = \sum_{\ell=0}^{N-1} u_\ell(m)g(t\lambda_\ell)u_\ell^*(n)$$

- Frequency  $\omega$  is replaced with eigenvalues of graph Laplacian  $\lambda_{\ell}$
- Translating to node *n* corresponds to multiplication by  $u_{\ell}^*(n)$
- **g** acts as a scaled bandpass filter, replacing  $\hat{\psi}$

# Matrix Form of SGWT<sup>2</sup>

Wavelet basis at scale t = collection of N number of wavelets (each wavelet centered at a particular node of the graph)

$$\mathbf{\Psi}_t = [\boldsymbol{\psi}_{t,1} | \boldsymbol{\psi}_{t,2} | \dots | \boldsymbol{\psi}_{t,N}] = \mathbf{U} \mathbf{G}_{\mathbf{t}} \mathbf{U}^{\mathsf{T}}$$

Wavelet coefficient at scale t and centered at node n of a graph signal f

$$W_f(t,n) = \langle \psi_{t,n}, \mathbf{f} \rangle = \psi_{t,n}^T \mathbf{f}$$



<sup>&</sup>lt;sup>2</sup>B.S. Manoj, A. Chakraborty, and R. Singh. *Complex Networks: A Networking and Signal Processing Perspective*. Prentice Hall communications engineering and emerging technologies series. Prentice Hall, 2018. ISBN: 9780134786995.

# SGWT Example







#### Spectral Filtering of Graph Signals

Spectral Filtering

#### Classical vs Graph Spectral Filtering



|                   | Classical Signal Processing                                                                                                                                                          | rocessing Graph Signal Processing                                                                                                                                                                                                                                                 |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Fourier Transform | $ \hat{f}(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt $ $ Frequency: \ \omega \text{ can take any value} $ $ Fourier \text{ basis: Complex exponentials} e^{j\omega t} $ | <ul> <li> <sup>Î</sup>(λ<sub>ℓ</sub>) = ∑<sup>N</sup><sub>n=1</sub> f(n)u<sup>*</sup><sub>ℓ</sub>(n)     </li> <li>Frequency: Eigenvalues of the graph Laplacian (λ<sub>ℓ</sub>)     </li> <li>Fourier basis: Eigenvectors of the graph Laplacian (u<sub>ℓ</sub>)     </li> </ul> |  |



Replace  $\omega$  by  $\lambda_\ell$  in graph spectral filtering



#### DIFFERENT GSP FRAMEWORKS

GSP Frameworks

#### Existing Graph Signal Processing (GSP) Frameworks



#### Discrete Signal Processing on Graphs (DSP<sub>G</sub>) framework

|                                                   | CSP based on Lanlacian                         | $DSP_{\mathrm{G}}$ Framework      |                                            |  |
|---------------------------------------------------|------------------------------------------------|-----------------------------------|--------------------------------------------|--|
| GSF based on Laplacian                            |                                                | Based on Weight<br>Matrix         | Based on Directed<br>Laplacian             |  |
| Shift Op-<br>erator Not defined                   |                                                | The weight matrix <b>W</b>        | Derived from directed<br>Laplacian (I – L) |  |
| LSI Filters Not applicable                        |                                                | Applicable                        | Applicable                                 |  |
| Applicability                                     | Only undirected graphs                         | Directed graphs                   | Directed graphs                            |  |
| Frequencies                                       | Eigenvalues of the<br>Laplacian (real)         | Eigenvalues of the weight matrix  | Eigenvalues of the di-<br>rected Laplacian |  |
| Harmonics                                         | Eigenvectors of the<br>Laplacian matrix (real) | Eigenvectors of the weight matrix | Eigenvectors of the directed Laplacian     |  |
| FrequencyLaplacianquadraticOrderingform (natural) |                                                | Total variation<br>(not natural)  | Total variation<br>(natural)               |  |



#### $\mathrm{DSP}_{\mathrm{G}}$ Framework

 $DSP_G$  FRAMEWORK

#### Discrete Signal Processing on Graphs ( $\mathsf{DSP}_G$ ) Framework



DSPG FRAMEWORK Weight Matrix

# DSP<sub>G</sub> Framework: Weight Matrix

- Shift operator
  - Weight matrix W of the graph
- Shifted graph signal  $\tilde{\mathbf{f}} = \mathbf{W}\mathbf{f}$
- Example: shifting discrete-time signal (one unit right)

$$\mathbf{x} = \begin{bmatrix} 9, 7, 5, 0, 6 \end{bmatrix}^{T}$$
$$= \mathbf{W}\mathbf{x} = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 9 \\ 7 \\ 5 \\ 0 \\ 6 \end{bmatrix} = \begin{bmatrix} 6 \\ 9 \\ 7 \\ 5 \\ 0 \\ 6 \end{bmatrix}$$





- Linear Shift Invariant (LSI) filters
  - $H(Wf_{in}) = W(Hf_{in})$
  - Polynomials in W

$$\mathbf{H} = h(\mathbf{W}) = \sum_{m=0}^{M-1} h_m \mathbf{W}^m$$
$$= h_0 \mathbf{I} + h_1 \mathbf{W} + \ldots + h_{M-1} \mathbf{W}^{M-1}$$

ñ

# $\mathsf{DSP}_{\mathrm{G}}$ Framework: Weight Matrix



- Analogy from classical signal processing
  - Classical Fourier basis: Complex exponentials
  - Complex exponentials are Eigenfunctions of Linear Time Invariant (LTI) filters
- Graph Fourier Transform
  - Graph Fourier basis are Eigenfunctions of Linear Shift Invariant (LSI) graph filters
  - Graph Frequencies: Eigenvalues of the weight matrix W
  - Graph Harmonics: Eigenvectors of the weight matrix W
  - $\mathbf{W} = \mathbf{V} \mathbf{\Sigma} \mathbf{V}^{-1}$

• GFT 
$$\hat{\mathbf{f}} = \mathbf{V}^{-1}\mathbf{f}$$
, IGFT  $\mathbf{f} = \mathbf{V}^{-1}\hat{\mathbf{f}}$ 

# $\mathsf{DSP}_{\mathrm{G}}$ Framework: Weight Matrix

Total Variation in classical signal processing

$$TV(\mathbf{x}) = \sum_{n} x[n] - x[n-1] = ||\mathbf{x} - \tilde{\mathbf{x}}||_1, \text{ where } \tilde{x}[n] = x[n-1]$$

Analogy from classical signal processing

Total Variation on graphs  $TV_{\mathcal{G}}(\mathbf{f}) = ||\mathbf{f} - \mathbf{\tilde{f}}||_1 = ||\mathbf{f} - W\mathbf{f}||_1$ 



 Eigenvalue with largest magnitude: Lowest frquency


DSPG FRAMEWORK Weight Matrix

### Problems in Weight Matrix based $\mathsf{DSP}_{\mathrm{G}}$



#### Weight matrix based DSP<sub>G</sub>

Does not provide "natural" frequency ordering

Even a constant signal has high frequency components



### GRAPH FOURIER TRANSFORM BASED ON DIRECTED LAPLACIAN

Graph Fourier Transform based on Directed Laplacian<sup>3</sup>



- $\blacksquare$  Redefines Graph Fourier Transform under  $\mathsf{DSP}_{\mathrm{G}}$ 
  - Shift operator: Derived from directed Laplacian
  - Linear Shift Invariant filters: Polynomials in the directed Laplacian
  - Graph frequencies: Eigenvalues of the directed Laplacian
  - Graph harmonics: Eigenvectors of the directed Laplacian
- "Natural" frequency ordering
- Better intuition of frequency as compared to the weight matrix based approach
- Coincides with the Laplacian based approach for undirected graphs

<sup>&</sup>lt;sup>3</sup>Rahul Singh, Abhishek Chakraborty, and BS Manoj. "Graph Fourier transform based on directed Laplacian". In: 2016 International Conference on Signal Processing and Communications (SPCOM). IEEE. 2016, pp. 1–5.

## Directed Laplacian Matrix



- Basic matrices of a directed graph
  - Weight matrix: W
    - w<sub>ij</sub> is the weight of the directed edge from node j to node i

In-degree matrix: 
$$\mathbf{D}_{in} = \text{diag}(\{d_i^{in}\}_{i=1,2,\dots,N}), \quad d_i^{in} = \sum_{i=1}^N$$

• Out-degree matrix:  $\mathbf{D}_{out} = diag(\{d_i^{out}\}_{i=1,2,...,N}), \quad d_i^{out} = \sum_{i=1}^N w_{ij}$ 



A directed graph



$$\tilde{\mathbf{x}} = S\mathbf{x} = (I - \mathbf{L})\mathbf{x} = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 9 \\ 7 \\ 1 \\ 0 \\ 6 \end{bmatrix} = \begin{bmatrix} 6 \\ 9 \\ 7 \\ 1 \\ 0 \end{bmatrix}$$

**S** = (I - L) is the **shift operator** 

Shifted graph signal: 
$$\tilde{f} = Sf = (I - L)f$$



#### Theorem

A graph filter **H** is LSI if the following conditions are satisfied.

- **I** Geometric multiplicity of each distinct eigenvalue of the graph Laplacian is one.
- 2 The graph filter **H** is a polynomial in **L**, i.e., if **H** can be written as

$$\mathbf{H} = h(\mathbf{L}) = h_0 \mathbf{I} + h_1 \mathbf{L} + \ldots + h_m \mathbf{L}^m$$

where,  $h_0, h_1, \ldots, h_m \in \mathbb{C}$  are called filter taps.

#### Graph Fourier Transform based on Directed Laplacian

- Jordan decomposition of the directed Laplacian: L = VJV<sup>-1</sup>
- Graph Fourier basis: Columns of V (Jordan Eigenvectors of L)
- Graph frequencies: Eigenvalues of L (diagonal entries of Jordan blocks in J)

• GFT 
$$\hat{\mathbf{f}} = \mathbf{V}^{-1}\mathbf{f}$$
 and IGFT:  $\mathbf{f} = \mathbf{V}\hat{\mathbf{f}}$ 

Frequency Ordering: based on Total Variation

Total Variation: 
$$TV_{\mathcal{G}}(\mathbf{f}) = ||\mathbf{f} - \mathbf{S}\mathbf{f}||_1 = ||\mathbf{f} - (\mathbf{I} - \mathbf{L})\mathbf{f}||_1$$
  
 $TV_{\mathcal{G}}(\mathbf{f}) = ||\mathbf{L}\mathbf{f}||_1$ 

#### Theorem

TV of an eigenvector  $\mathbf{v}_r$  is proportional to the absolute value of the corresponding eigenvalue

 $\mathrm{TV}(\mathbf{v}_r) \propto |\lambda_r|$ 



DSP<sub>G</sub> FRAMEWORK Frequency Ordering

## Frequency Ordering



Undirected graph with real edge weights.



Graph with positive edge weights



Undirected graph with real and non-negative edge weights.





Graph signal  $\mathbf{f} = [0.1189 \ 0.3801 \ 0.8128 \ 0.2441 \ 0.8844]^T$  defined on the directed graph



Spectrum of the signal  $\mathbf{f} = [0.1189 \ 0.3801 \ 0.8128 \ 0.2441 \ 0.8844]^T$ 





Graph signal  $\mathbf{f} = [0.1189 \ 0.3801 \ 0.8128 \ 0.2441 \ 0.8844]^T$  defined on the directed graph



Spectrum of the signal  $\mathbf{f} = [0.1189 \ 0.3801 \ 0.8128 \ 0.2441 \ 0.8844]^T$ 

## Example: Zero Frequency

- Eigenvector corresponding to  $\lambda_0$  is  $\mathbf{v}_0 = \frac{1}{\sqrt{N}} \begin{bmatrix} 1, \ 1, \dots \ 1 \end{bmatrix}^T$ 
  - TV of v<sub>0</sub> is zero
- For a constant graph signal  $\mathbf{f} = [k, k, ...]^T$ , GFT is  $\mathbf{\hat{f}} = [(k\sqrt{N}), 0, ...]^T$

Only zero frequency component



A weighted directed graph



Spectrum of the constant signal  $\mathbf{f} = \begin{bmatrix} 1 \ 1 \ 1 \ 1 \ 1 \end{bmatrix}^T$ 

## Example: Zero Frequency

- Eigenvector corresponding to  $\lambda_0$  is  $\mathbf{v}_0 = \frac{1}{\sqrt{N}} \begin{bmatrix} 1, \ 1, \dots \ 1 \end{bmatrix}^T$ 
  - TV of v<sub>0</sub> is zero
- For a constant graph signal  $\mathbf{f} = [k, k, ...]^T$ , GFT is  $\mathbf{\hat{f}} = [(k\sqrt{N}), 0, ...]^T$ 
  - Only zero frequency component
- The weight matrix based approach of GFT fails to give this basic intuition



A weighted directed graph



Spectrum of the constant signal  $\mathbf{f} = \begin{bmatrix} 1 \ 1 \ 1 \ 1 \ 1 \end{bmatrix}^T$ 

## Comparison of the GSP Frameworks



|                       | GSP based on Laplacian                         | $DSP_{\mathrm{G}}$ Framework      |                                            |
|-----------------------|------------------------------------------------|-----------------------------------|--------------------------------------------|
|                       |                                                | Based on Weight<br>Matrix         | Based on Directed<br>Laplacian             |
| Shift Op-<br>erator   | Not defined                                    | The weight matrix <b>W</b>        | Derived from directed<br>Laplacian (I – L) |
| LSI Filters           | Not applicable                                 | Applicable                        | Applicable                                 |
| Applicability         | Only undirected graphs                         | Directed graphs                   | Directed graphs                            |
| Frequencies           | Eigenvalues of the<br>Laplacian (real)         | Eigenvalues of the weight matrix  | Eigenvalues of the di-<br>rected Laplacian |
| Harmonics             | Eigenvectors of the<br>Laplacian matrix (real) | Eigenvectors of the weight matrix | Eigenvectors of the directed Laplacian     |
| Frequency<br>Ordering | Laplacian quadratic<br>form (natural)          | Total variation<br>(not natural)  | Total variation<br>(natural)               |

Conclusions

## Filtering in Spectral Domain

- **x**  $\in \mathbb{R}^N$  be a single-channel input signal on the graph
- Graph convolution of the input graph signal  $\mathbf{x}$  with a filter  $\mathbf{g}$  is

$$\mathbf{x} * \mathbf{g} := \mathbf{U}\left( (\mathbf{U}^{\mathsf{T}} \mathbf{x}) \odot (\mathbf{U}^{\mathsf{T}} \mathbf{g}) 
ight) = \mathbf{U} \hat{\mathbf{G}} \mathbf{U}^{\mathsf{T}} \mathbf{x},$$

$$\hat{\mathbf{G}} := \operatorname{diag}(\hat{\mathbf{g}}) = \operatorname{diag}\{\hat{g}_1, \ldots, \hat{g}_N\}$$

- Spectral-GNN<sup>4</sup> learn all the filter coefficients (expensive)
- Approximate via K<sup>th</sup> order polynomials of the graph frequencies (K << N)</li>

• 
$$\hat{g}(\lambda_j) = \sum_{i=0}^{K} \theta_i \lambda_j^i$$
,  $\theta \in \mathbb{R}^{K+1}$  are filter coefficients  
 $\mathbf{x} * \mathbf{g} \approx \mathbf{U} \left( \sum_{i=0}^{K} \theta_i \mathbf{\Lambda}^i \right) \mathbf{U}^T \mathbf{x} = \sum_{i=0}^{K} \theta_i \mathbf{L}_n^i \mathbf{x}$ .



<sup>&</sup>lt;sup>4</sup> Joan Bruna et al. "Spectral networks and deep locally connected networks on graphs". In: 2nd International Conference on Learning Representations, ICLR. 2014.

Conclusions

## Spectral Graph Neural Networks<sup>5</sup>



The spectral GNN filters and transforms the features repeatedly throughout L layers and then applies a linear prediction.

<sup>&</sup>lt;sup>5</sup>Rahul Singh and Yongxin Chen. "Signed Graph Neural Networks: A Frequency Perspective". In: Transactions on Machine Learning Research (2023). ISSN: 2835-8856. URL: https://openreview.net/forum?id=RZveYHgZbu.

# GCN<sup>6</sup>



First order polynomial filter (K = 1) with  $\theta_0 = 2\theta$  and  $\theta_1 = -\theta$ 

$$\mathbf{x} * \mathbf{g} pprox heta \ (\mathbf{2I} - \mathbf{L}_n) \ \mathbf{x} = heta \ (\mathbf{I} + \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}) \ \mathbf{x}$$

 $\blacksquare$  With self-loop  $\boldsymbol{\tilde{A}} = \boldsymbol{A} + \boldsymbol{I}$  and  $\boldsymbol{\tilde{D}} = \boldsymbol{D} + \boldsymbol{I}$ 

$$\mathbf{x} \ast \mathbf{g} \approx \theta \, \left( \tilde{\mathbf{D}}^{-1/2} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-1/2} \right) \, \mathbf{x}$$



<sup>&</sup>lt;sup>6</sup>Thomas N. Kipf and Max Welling. "Semi-Supervised Classification with Graph Convolutional Networks". In: International Conference on Learning Representations (ICLR). 2017.

Conclusions

### Graph Neural Networks





GNNs learn latent node representations via

Feature Aggregation and Feature Transformation

■ Vanilla GCN: ℓ<sup>th</sup> layer reads

$$\mathbf{H}^{(\ell)} = \sigma \left( \mathbf{P} \ \mathbf{H}^{(\ell-1)} \ \mathbf{\Theta}^{(\ell)} \right)$$

■ H<sup>(0)</sup> = X, P = D<sup>-1/2</sup>ÃD<sup>-1/2</sup> is the low-pass feature aggregation filter, O<sup>(ℓ)</sup> is a learnable transformation matrix





- Introduction to Graph Signal Processing (GSP)
- Graph Fourier Transform
  - Laplacian Eigenvalues as graph frequencies
  - Laplacian eigenvectors as graph Fourier basis
- Graph wavelets





Review Papers<sup>789</sup>

DSP<sub>G</sub> framework<sup>10</sup>

<sup>&</sup>lt;sup>7</sup>David I Shuman et al. "The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains". In: Signal Processing Magazine, IEEE 30.3 (2013), pp. 83–98.

<sup>&</sup>lt;sup>8</sup>Antonio Ortega et al. "Graph signal processing: Overview, challenges, and applications". In: *Proceedings of the IEEE* 106.5 (2018), pp. 808–828.

<sup>&</sup>lt;sup>9</sup>Geert Leus et al. "Graph Signal Processing: History, development, impact, and outlook". In: *IEEE Signal Processing Magazine* 40.4 (2023), pp. 49–60.

<sup>&</sup>lt;sup>10</sup>B.S. Manoj, A. Chakraborty, and R. Singh. Complex Networks: A Networking and Signal Processing Perspective. Prentice Hall communications engineering and emerging technologies series. Prentice Hall, 2018. ISBN: 9780134786995, Aliaksei Sandryhaila and José MF Moura. "Discrete signal processing on graphs". In: IEEE transactions on signal processing 61.7 (2013), pp. 1644–1656.





r.singh@yale.edu