Graph Signal Processing

Rahul Singh

>
¢

Sep 8, 2024




#0

Next 90 + ? minutes: signals processing over graphs

About me

Signal Processing, Indian Institute of Space Science and Technology
(graphs, Fourier, wavelets)

Electrical Engineering, lowa State University (Image Processing)

Machine Learning, Georgia Tech (using structure in data)

Wu Tsai Postdoctoral Fellow, Yale (Computational Neuroscience)

Mentors: Smita Krishnaswamy and Joy Hirsch
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INTRODUCTION Classical vs Graph signal Processing

Classical Signal Processing
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Structure behind time-series (speech, EEG, fMRI,...)
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INTRODUCTION Classical vs Graph signal Processing

Classical Signal Processing >

B Translation, filtering, convolution, modulation, Fourier
transform, sampling . ..
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INTRODUCTION

Classical vs Graph signal Processing

Classical Signal Processing: Modulation
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Modulation is used to change the frequency band of a signal

Enables RF communication in different frequency bands

Used in cell phones, AM/FM radio, WLAN, cable TV, ...

Higher frequencies lead to smaller antennas
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INTRODUCTION Classical vs Graph signal Processing

Classical Signal Processing: Filtering
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Voiceband RF transmission Voiceband RF reception
frequencies frequencies frequencies frequencies

Filtering is used to remove undesired signals outside of the
frequency band of interest

Enables selection of a specific radio, TV, WLAN, cell phone, cable
TV

Also fundamental for denoising, smoothing, etc.
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INTRODUCTION Classical vs Graph signal Processing

Graph Signal Processing >
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A graph signal
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INTRODUCTION Classical vs Graph signal Processing

>

Graph Signal Processing P

B Vertices: brain regions

B Edges: structural connectivity between
brain regions

B Signal: blood-oxygen-level-dependent
(BOLD) time series
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INTRODUCTION Applications

Graph Signal Processing Applications b

~ -
=25 Transportation Networks

¥ Temperature/pressure recorded in a sensor network
5 Number of followers of each user in a social network
B Traffic at each node in a road network

B Traffic at each node in a computer network
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INTRODUCTION Applications

Geometric Scattering Trajectory Homology (GSTH)

A Step 1: Graph creation Step 2: Graph signal processing

Time-steps (0.5Hz)
£ 88
Death

Filtration parameter
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INTRODUCTION

Difficulty in GSP

Translation is simple in classical
signal processing

2 4 6 8 10 12 14 16 18 20
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INTRODUCTION

Difficulty in GSP

= What does it mean to translate the
¥ Translation is simple in classical signal to ‘vertex 50'?

signal processi
e pr e B Challenging in GSP
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INTRODUCTION

>

Need for Frequency

ft] = @ [t] + x2[t] + z5[t]

W%WMW

x1[t] = by sin 27wt

Fourier transform |Z(w)|

Ta [t] = bz sin 2T|'w2t

23[t] = bg sin 2mwst A

Wy Wy ws
—
E[t] = z1 [t] + z2[t]

W\AM/\/
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INTRODUCTION

Need for Frequency

Classical Fourier transform provides the frequency domain
representation of signals

cos( @) F {cos(aw,)}
AU%Q\—‘ - 1 | 1 ®
oy |0 @,

A notion of frequency for graph signals?

We need Laplacian Matrix
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INTRODUCTION Notation

Notation
0
1
Weight matrix W= |1
0
0
2
A h signal f 0
graph signa Degree matrix D= |0
0
Graph G = (V, W) 0
Laplacian matrix
2 2 -1
3 -1 4
f=14 L=D-W-=|-1 -1
-3 0 -1
0 -1

O

oo o pM~MO

O O R K

O O woo

H O K H=O

o wo oo

o= O+ O

N O OOoOOo
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GRAPH LAPLACIAN

Graph Laplacian

-1 4 -1 -1 -1
L=|-1 -1 3 -1 0
o -1 -1 3 -1
o -1 0 -1 2

Symmetric

Off-diagonal entries non-positive
Rows sum up to zero

Positive semi-definite
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GRAPH LAPLACIAN

Multiplication by the Laplacian

Signal y = Lx results from multiplying x with the Laplacian

Vi = 2jen; Wii(xi — xj)
Replaces x; by weighted average of difference with neighbors
Further Laplacian multiplications

L2x brings in features from 2-hop neighborhood

L3x brings in features from 3-hop neighborhood

L*x brings in features from k-hop neighborhood
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GRAPH LAPLACIAN

Laplacian Quadratic Form

The Laplacian quadratic form of graph signal x is x " Lx

1
x"Lx = = > wy(xi — x;)?
2 -
(ij)e€
xTLx quantifies the local variation of signal x

Signals can be ordered depending on how much they vary

Will be used to order graph frequencies
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EIGENVALUES AND EIGENVECTORS

Eigenvectors and Eigenvalues

For a square matrix Apnxpn,

1 1
u is an eigenvector 4‘

-1 0 1 2 -1 1
Scalar X is the eigenvalue l
;

N eigenvalues and N eigenvectors

2 1 s
For A = [O _1] ,
2 1|1 1 2 1][1 1
A =2and A = —1 are eigenvalues.
1 1 . .
u= [O and u = _3| are corresponding eigenvectors
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GRAPH SPECTRUM

Graph Spectrum

L=|-1 -1 3 -1
0 -1 -1 3 -1
0O 0 0 -1 1

Eigenvalues (Graph Spectrum): {0, 0.8299, 2.6889, 4, 4.4812}

0.4472 04375  0.7031 0 0.3380
04472 0.2560 —0.2422 0.7071 —0.4193
U = [uo|us|up|us|us] = |[0.4472 0.2560 —0.2422 —0.7071 —0.4193
0.4472 —0.1380 —0.5362 0 0.7024
0.4472 —0.8115 0.3175 0 —0.2018
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COMPARISON Classical vs Graph Signal Processing

Classical vs Graph Signal Processing

Operator/ Transform

Classical Signal Processing

Graph Signal Processing

Fourier Transform

oo .

K (w) = f x(t)e ™It dt
—0o0

Frequency: w can take any value

Fourier basis: Complex exponentials
wt

. _ N "
o) = Fmuy(n)
Frequency: Eigenvalues of the graph
Laplacian (Ap)

Fourier basis: Eigenvectors of the
graph Laplacian (uy)

Convolution

In time domain:

x(t)*y(t) = (r)y(t—7)dT

X
— 00
In frequency domain:
x(t) * y(t) = X(w)9(w)

Defined through Graph Fourier
Transform

fre= (f.g)

Can be defined using convolution

Defined through graph convolution

M, x(t) = &“tx(t)

Translation Trx(t) = x(t — 7) = x(t) * 5.(2) Tif(n) = VN(F * 8;)(n)
_ N—1 , .
=VNY U (Due(n)
Multiplication with the complex Multiplication with the eigenvector
Modulation exponential of the graph Laplacian

My f(n) = V/Nuy(n)f(n)

Graph Signal Processing
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GRAPH FOURIER TRANSFORM

Graph Fourier Transform

Classical Signal Processing Graph Signal Processing
oo _i 2 N
N _ jwt _ *
%(w) fim x(t)e It dt ) =Y F(mug (n)
Fourier Transform Frequency: w can take any value Frequency: Eigenvalues of the graph

. . . Laplacian (A
Fourier basis: Complex exponentials P (xe)
wt Fourier basis: Eigenvectors of the

graph Laplacian (uy)

Graph Fourier Transform

Graph Fourier basis are Eigenfunctions of the Laplacian matrix
(operator)

Graph Frequencies: Eigenvalues of the Laplacian matrix L

Graph Harmonics: Eigenvectors of the Laplacian matrix L

U = [uofurfua] ]|

GFT
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GRAPH FOURIER TRANSFORM

Graph Signal in Two Domains

GFT coefficients
2

—~

=
=

0

f

-2

01234)\56789

l
Eigenvalues of graph Laplacian

A graph signal in vertex domain and spectral domain
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GRAPH FOURIER TRANSFORM

Frequency Ordering

Use the Laplacian quadratic of uis u’ Lu
uoTLuo =7

Uirl.l.ll =7

Graph Signal Processing
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GRAPH FOURIER TRANSFORM

Frequency Ordering

Use the Laplacian quadratic of uis u’ Lu

uoTLuo =7
Uirl.l.ll =7
UZ—LUk = )\k

Small eigenvalues are low frequencies
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GRAPH FOURIER TRANSFORM

Laplacian Eigenvectors as GFT Basis
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EFFECT OF VERTEX INDEXING

B Effect of Vertex Indexing on Graph Harmonics and Signal Representation!
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EFFECT OF VERTEX INDEXING

Effect of Vertex Indexing

03 0
0.1 0.2

04 -03 -01 O
-03 1 -02 -05
-01 -02 1 —-07

0 05 07 1.2

Frequencies A: 0.0000, 0.4640, 1.2308, 1.9052

0.5000 0.8316  0.2185  0.1034
Harmonics U= 0.5000 —0.0494 —-0.7942 —-0.3417
~ 10.5000 —0.3837 0.5669 —0.5305

0.5000 —0.3985 0.0088  0.7689
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EFFECT OF VERTEX INDEXING

Effect of Vertex Indexing (cont'd.. .)

0.5000 0.8316 0.2185 0.1034 g
0.5000 —0.0494 —0.7942 —0.3417

U= 0.5000 —0.3837 0.5669 —0.5305 0“‘?3
0.5000 —0.3985 0.0088 0.7689 e

u3
u
1 up
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EFFECT OF VERTEX INDEXING

Effect of Vertex Indexing (cont'd.. .)

0.5 0.8316 0.2185 0.1034
0.5 —0.0494 —0.7942 —0.3417
0.5 —0.3837 0.5669 —0.5305
0.5 —-0.3985 0.0088 0.7689

Graph signal as linear combination of the Harmonics

fi=[52609]"
5 0.5 0.8316 0.2185 0.1034
2 0.5 —0.0494 —0.7942 —0.3417
fi="16| =) |o5|T(-183) | _3537| T (298) | 5669 | T (357 | _o5305
9 0.5 —0.3985 0.0088 0.7689
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EFFECT OF VERTEX INDEXING

Effect of Vertex Indexing (cont'd.. .)

Case 1 Case 2

04 -03 -0.1 0 1 -0.2 —-05 -03

L— -0.3 1 -0.2 -0.5 L— —-0.2 1 -0.7 —-0.1
-0.1 -0.2 1 -0.7 -05 —-07 12 0

0 -05 —-07 12 -03 -0.1 0 0.4
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EFFECT OF VERTEX INDEXING

Effect of Vertex Indexing (cont'd.. .)

Case 1 Case 2

A: 0, 0.4640, 1.2308, 1.9052 A: 0, 0.4640, 1.2308, 1.9052

0.5000 —0.0494 —0.7942 —0.3417
0.5000 —0.3837 0.5669 —0.5305
0.5000 —0.3985 0.0088 0.7689
0.5000 0.8316 0.2185 0.1034

0.5000 0.8316 0.2185 0.1034
0.5000 —0.0494 —0.7942 —0.3417(|U=
0.5000 —0.3837 0.5669 —0.5305
0.5000 —0.3985  0.0088 0.7689
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EFFECT OF VERTEX INDEXING

Effect of Vertex Indexing (cont'd.. .)

Case 1 Case 2

ug up
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EFFECT OF VERTEX INDEXING

Effect of Vertex Indexing (cont'd.. .)

5 0.5 0.8316 0.2185 0.1034
2 0.5 —0.0494 —0.7942 —0.3417
fi=1g| =L [g5| T (-1.83) | 3557 | +(298) | 5660 | +(357) | 5305
9 0.5 ~0.3985 0.0088 0.7689
f,=[2695]"
2 0.5 —0.0494 —0.7942 —0.3417
6 0.5 —0.3837 0.5669 —0.5305
fo=1g| =QA1) 55| +(=1.83) | (3085 |+ (298) | o 50g5 | T (357) | 7689
5 0.5 0.8316 0.2185 0.1034
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EFFECT OF VERTEX INDEXING

Effect of Vertex Indexing (cont'd.. .)

Case 1 Case 3

04 -03 -0.1 0 1 -05 —-03 -0.2
L— -0.3 1 -0.2 -0.5 L— -05 1.2 0 -0.7
-0.1 -0.2 1 -0.7 -0.3 0 04 0.1

0 -05 —-07 12 -0.2 —-0.7 -0.1 1
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EFFECT OF VERTEX INDEXING

Effect of Vertex Indexing (cont'd.. .)

Case 1 Case 3

A: 0, 0.4640, 1.2308, 1.9052 A: 0, 0.4640, 1.2308, 1.9052

0.5000 —0.0494 —0.7942 —0.3417
0.5000 —0.3985  0.0088 0.7689
0.5000 0.8316 0.2185 0.1034
0.5000 —0.3837 0.5669 —0.5305

0.5000 0.8316 0.2185 0.1034
0.5000 —0.0494 —0.7942 —0.3417(|U=
0.5000 —0.3837 0.5669 —0.5305
0.5000 —0.3985  0.0088 0.7689
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EFFECT OF VERTEX INDEXING

Effect of Vertex Indexing (cont'd.. .)

Case 3

ug
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EFFECT OF VERTEX INDEXING

Effect of Vertex Indexing (cont'd.. .)

5 0.5 0.8316 0.2185 0.1034
2 0.5 —0.0494 —0.7942 —0.3417
fi=1g| =L [g5| T (-1.83) | 3557 | +(298) | 5660 | +(357) | 5305
9 05 —0.3985 0.0088 0.7689

f3=[2956]"
2 0.5 —0.0494 —0.7942 —0.3417
9 05 ~0.3985 0.0088 0.7689
fa= 15| =) o5 T (=1.83) | 5g316 | +(298) | 5r1g5 | T(357) | o034
6 05 —0.3837 0.5669 —0.5305
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EFFECT OF VERTEX INDEXING

Effect of Vertex Indexing (cont'd.. .)

Change in vertex indexing

Alters signal representation in vertex domain: signal indexing
changes

No change in frequency domain representation of the signal (GFT
coefficients)
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GRAPH CONVOLUTION

Graph Convolution

0
-1 3 -1 -1 O
0

0O 0 0 -1 1

Eigenvalues: 0, 0.8299, 2.6889, 4, 4.4812

0.4472 0.4375  0.7031 0 0.3380
0.4472 0.2560 —0.2422 0.7071 —0.4193
U= |0.4472 0.2560 —0.2422 —-0.7071 —0.4193
0.4472 —0.1380 —0.5362 0 0.7024
0.4472 —0.8115 0.3175 0 —0.2018
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GRAPH CONVOLUTION

Graph Convolution(cont'd. . .)

3
(2)
N
@ ® g=[4,2 4,2 2T
f=3 4,6, 3, 17

=fxg=IGFT(f.g)

h = [21.92, 23.92, 21.08, 21.72, 17.80]7

Building block for graph neural networks (GNNs)
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GRAPH CONVOLUTION

Graph Translation

Translation to node i :

Ti(F) = VN (f = ) = VN IGFT(EUT(:, )

3.72

(2)
g

Tyf = [3.72, 3.56, 3.56, 1.08, 5.08]7

Tof = [5.08, 1.50, 4.66, 3.56, 2.21]7

Tif = [2.44, 5.08, 5.08, 3.72, 0.69]7
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Classical vs Graph Signal Processing (Laplacian Based)

COMPARISON Classical vs Graph Signal Processing

Operator/ Transform

Classical Signal Processing

Graph Signal Processing

Fourier Transform

2(w) = f"o x(t)e <t dt
—oo
Frequency: w can take any value

Fourier basis: Complex exponentials

Jwt

R _ N "
o)=Y f(mu(n)
Frequency: Eigenvalues of the graph
Laplacian (Ap)

Fourier basis: Eigenvectors of the
graph Laplacian (uy)

Convolution

In time domain: o
x(t)*xy(t) = f—oo x(7)y(t—7)dT

In frequency domain:

x(t) x y(t) = £(w)y(w)

Defined through Graph Fourier
Transform

- (1)

Can be defined using convolution

Defined through graph convolution

My x(t) = &¥tx(t)

Translation Tox(t) = x(t — 7) = x(t) * 5,(2) Tif(n) = VN( * 8;)(n)
N—1. *
=VNY  F)ug (Due(n)
Multiplication with the complex Multiplication with the eigenvector
Modulation exponential of the graph Laplacian

Myf(n) = /Nuy (n)f(n)

Graph Signal Processing
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SPECTRAL CLUSTERING OF COMPLEX NETWORKS




SPECTRAL CLUSTERING

Spectral Clustering of Complex Networks

Network with four clusters
Spectral graph clustering algorithm
Can be used for community detection

Eigenvectors of the graph Laplacian for clustering
Graph Signal Processing
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SPECTRAL CLUSTERING

Spectral Clustering of Complex Networks

06 06

EnnnEEn

» s J‘l| l‘lll

u(n)

04 04
0 5 10 15 0 10 15
Node index “n” Node index “n”
(a) up (b) ug
0.6, 06
0.4] 04
0.2, [ | | 0.2 I I {
‘g' oLt ¢t 1 ] l ‘g’ 1] II l T I
02 | | ‘ 02 J ‘ I I
04 0.4
0 5 10 15 0 5 10 15
Node index “n” Node index “n”
() uz (d) u3
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SPECTRAL CLUSTERING

Spectral Clustering of Complex Networks Ej?
0.6 0.8
0.4 0.4 ‘
] sl
ST
0.4 0.4
5ch:lss index “::,9 " ! 5Nodss index “;S *
(a) ug (b) wy
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SPECTRAL CLUSTERING

Spectral Clustering of Complex Networks kf
P

0.6 0.6

0.4 0.4

02 [ | | 02 | ‘ ‘

= 2|
02 | | ‘ 02 l ‘ I
0.4 0.4
0 5 10 15 ) 5 10 15

Node index “n” Node index “n”
() uz (d) u3
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SPECTRAL CLUSTERING

Spectral Clustering of Complex Networks!

Algorithm 8.1 Algorithm for Spectral Graph Clustering

: Compute the graph Laplacian L = D — W.

: Compute the first k eigenvectors ug, uy, ..., u;_q of L.

: Create the matrix Uy = [ug|u;|...u;_1] whose columns are the k eigenvectors of L.

: Let z; € R¥ be the i row of Uy.

: Cluster the N points {z;};—, 0, . n into k clusters with k-means or any other
algorithm.

6: Assign the node v; to cluster j if and only if point z; was assigned to cluster j.

W N =

Ul o

1Bs. Manoj, A. Chakraborty, and R. Singh. Complex Networks: A Networking and Signal Processing
Perspective. Prentice Hall communications engineering and emerging technologies series. Prentice Hall, 2018
ISBN: 9780134786995.
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APPLICATION

Example Application P

® Sensor Malfunction Detection

Low frequencies High frequencies

Temperature on a graph and its spectrum

20 L

A N Ty

Low frequencies High frequencies Low frequencies High frequencics

True signal and Corrupted signal after HPF
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GFT LIMITATIONS

(Graph) Fourier Transform Limitations

Signal Spectrum

Chirp &
up 3

Chirp
Down

Frequency

1

Time Frequency

Different in time but same frequency representation!

(Graph) Fourier Transform only gives “what” frequency
components are present

Cannot tell at what time (where in graph) the frequency
components are present

Simultaneous time frequency representation: wavelets
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‘WAVELETS

Classical Wavelets >
P

B Wavelet: a small wave

B Ability to provide time-frequency representation
simultaneously

e

Haar Shannon or Sinc Daubechies 4 Daubechies 20

e
e

Gaussian or Spline Biorthogonal Mexican Hat Coiflet
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‘WAVELETS

Classical Wavelets Cont'd T

" Wavelets at different “shifts” and “scales”

sgnal 2\

Wavelet E—’\) L‘-E

=
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‘WAVELETS

Classical Wavelets Cont'd pad

signal

frequency (0 ,)
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GRAPH WAVELETS SGWT

Spectral Graph Wavelet Transform

Classical wavelets

Wavelets at different scales and locations are constructed by scaling
and translating a single “mother” wavelet ¢

s,a(x) = %w (%)

Scaling in Fourier domain | #s2(x) = 5 fjooo & P(sw)e ™ dw

Scaling ¥ by 1/s corresponds to scaling ¢ with s
Term e™/*? comes from localization of the wavelet at location a

Spectral Graph Wavelets
Graph wavelet at scale t and centered at node n

N—-1

Yen(m) = > u(m)g(tre)ug(n)

~
Il

Frequency w is replaced with eigenvalues of graph Laplacian A,
Translating to node n corresponds to multiplication by u;(n)
g acts as a scaled bandpass filter, replacing ¢
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GRAPH WAVELETS SGWT

Matrix Form of SGWT?

Wavelet basis at scale t = collection of N number of wavelets
(each wavelet centered at a particular node of the graph)

v, = [¢t,1|'¢t,2

Wavelet coefficient at scale t and centered at node n of a
graph signal f

.. e ] = UGUT

Wf(ta n) = <¢t,mf> = t7,—nf

2B.s. Manoj, A. Chakraborty, and R. Singh. Complex Networks: A Networking and Signal Processing
Perspective. Prentice Hall communications engineering and emerging technologies series. Prentice Hall, 2018
ISBN: 9780134786995.
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GRAPH WAVELETS SGWT

SGWT Example

]
2 Re(A)

-0

Im(A)

4
Re(\)

Kernel at scale t = 1.4736

Kernel at scale t = 0.2 Kernel at scale t = 0.5429
_0.02 Q 0.02 -045 Q 015 -04 Q 0.4
o . P e ——
- ~. e e y e
e / o o . o
P o S ~e

o 0o

Wavelet at scale t = 7.3034

Wavelet at scale t = 2.6906

Wavelet at scale t = 19.8244

g(tXo)
g(t}q)

v, = ["f’t,1|'¢’t,2| "‘/’t,N] =V

V-l =VGv!

g(tAn_1)

54/76
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SPECTRAL FILTERING OF GRAPH SIGNALS




SPECTRAL FILTERING

Classical vs Graph Spectral Filtering

Classical Signal Processing Graph Signal Processing

P [eS] i PS N
# _ f f jwt _ *
(@)= | f(e™i“tar o) = Fn)u;(n)
Fourier Transform Frequency: w can take any value Frequency: Eigenvalues of the graph
Fourier basis: Complex exponentials Laplacian (Ar)

Fourier basis: Eigenvectors of the
graph Laplacian (up)

FT IFT

f| = | fw) = | §w)fw)| = |fxg

High-pass =

Replace w by A, in graph spectral filtering

Graph Signal Processing
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DIFFERENT GSP FRAMEWORKS




Existing Graph Signal Processing (GSP) Frameworks

GSP FRAMEWORKS

Discrete Signal Processing on Graphs (DSP¢) framework

GSP based on Laplacian

DSP: Framework

Based on
Matrix

Weight

Based on Directed
Laplacian

Shift Op- | Not defined The weight matrix W | Derived from directed
erator Laplacian (I — L)
LSI Filters Not applicable Applicable Applicable
Applicability| Only undirected graphs Directed graphs Directed graphs
Frequencies | Eigenvalues of the | Eigenvalues of the | Eigenvalues of the di-
Laplacian (real) weight matrix rected Laplacian
Harmonics | Eigenvectors of the | Eigenvectors of the | Eigenvectors of the
Laplacian matrix (real) weight matrix directed Laplacian
Frequency Laplacian quadratic | Total variation Total variation
Ordering form (natural) (not natural) (natural)

Graph Signal Processing
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DSPg FRAMEWORK




DSPg FRAMEWORK

Discrete Signal Processing on Graphs (DSPg) Framework

Shift Operator

Graph Fourier
Transform

‘ Graph Frequencies ‘

—>  LSIFilters <---—m--mv >
Graph harmonics

are eigenfunctions
of LSI filters

Graph Harmonics ‘

Frequency
Ordering

used for frequency
ordering

Concepts in the DSPg framework

Graph Signal Processing
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DSPg FRAMEWORK Weight Matrix

DSP¢ Framework: Weight Matrix

Shift operator

Weight matrix W of the graph
—> H —
Shifted graph signal fin four = Hfin

A linear graph filter

Example: shifting discrete-time
signal (one unit right)

Linear Shift Invariant (LSI) filters

O >@—@—0— H(Wf,) = W(Hf;,)

Polynomials in W
x=1[9, 7, 5, 0, 6]

M—-1
H=h(W) = > hnW"
m=0

o 0 0 0 1] 79 6
1 0 0 0 of |7 9

$=Wx=]0 1 0 0 of |5(=]7 = hol + MW + ... + hpy_ W1
0 0 1 0 o0f]o 5
0 0 0 1 0f]e6 0
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DSP¢ Framework: Weight Matrix

Analogy from classical signal processing

Classical Fourier basis: Complex exponentials

Complex exponentials are Eigenfunctions of Linear Time Invariant
(LTI) filters

Graph Fourier Transform

Graph Fourier basis are Eigenfunctions of Linear Shift Invariant
(LSI) graph filters

Graph Frequencies: Eigenvalues of the weight matrix W

Graph Harmonics: Eigenvectors of the weight matrix W

oFT [f=viil eFT
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DSP¢ Framework: Weight Matrix

Total Variation in classical signal processing

‘ TV(x) =3 x[n] — x[n — 1] = ||[x — &||x ‘ where %[n] = x[n — 1]

Analogy from classical signal processing

Total Variation on graphs | TVg(f) = [|f — ||z = ||f — Wf||,

Tm

Frequency ordering: Based on Total
Variation

Eigenvalue with largest magnitude: ~lomaal lomar| R

Lowest frquency
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Problems in Weight Matrix based DSP¢

Im

Constant graph signal

A 0.36
f= 10016

2.20

Graph frequencies:
-1.62,-1.47, -0.46, 0.62, 2.94

Weight matrix based DSP¢

Does not provide “natural” frequency ordering

Even a constant signal has high frequency components
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DSPg FRAMEWORK Directed Laplacian

Graph Fourier Transform based on Directed Laplacian®

Redefines Graph Fourier Transform under DSPq
Shift operator: Derived from directed Laplacian
Linear Shift Invariant filters: Polynomials in the directed Laplacian
Graph frequencies: Eigenvalues of the directed Laplacian

Graph harmonics: Eigenvectors of the directed Laplacian
“Natural” frequency ordering

Better intuition of frequency as compared to the weight
matrix based approach

Coincides with the Laplacian based approach for undirected
graphs

3Rahul Singh, Abhishek Chakraborty, and BS Manoj. “Graph Fourier transform based on directed Laplacian”.
In: 2016 International Conference on Signal Processing and Communications (SPCOM). |EEE. 2016, pp. 1-5.
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Directed Laplacian Matrix

Basic matrices of a directed graph
Weight matrix: W

wjj is the weight of the directed edge from node j to node i

In-degree matrix: Di, = diag({d/"}i=12....n), dI" = Z,N:l wij

Out-degree matrix: Dout = diag({d?** }ic12,....n), d7 = Zil w;

Directed Laplacian matrix m

Sum of each row is zero

/@\ \ = 0 is surely an eigenvalue

0O 0 o0 1 1 0 0 O 1 0 0 -1
1 0 1 1 0 30 0 -1 3 —1 -1
/’ W=11 1 o0 of Pn=]o 0 2 o L= o1 2 0
1 0 (V] o 0 O 1 -1 0 0 1
Weight matrix In-degree matrix Directed Laplacian matrix
A directed graph
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Shift Operator

1 0 0 0o -1
-1 1 0 0 0
—>(3)—>
@—@—0— L—|o <1 1 o o
0 0 -1 1 0
0 0 0 -1 1
A directed cyclic (ring) graph Laplacian matrix

A signal x =[9 7 1 0 6]7; shifted by one unit to the right X =[697 1 0]
0 0 0 0 1

0
x=Sx=(I—-L)x= 0
1
0

cocor
coro
—=ooo
cocoo
oo R ~N©
Il
orR~N©0oOo

S = (I—L) |is the shift operator

Shifted graph signal: |f = Sf = (I — L)f
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LSI Filters

—> H —>
fin fout = Hfzn

A linear graph filter

Linear Shift-Invariant (LSI) filter: ’S(fout) = H(Sf,)

Theorem
A graph filter H is LS| if the following conditions are satisfied.

Geometric multiplicity of each distinct eigenvalue of the graph
Laplacian is one.

The graph filter H is a polynomial in L, i.e., if H can be written as
H = h(L) = hol + ML+ ...+ h,L"

where, hg, hy, ... , hy, € C are called filter taps.
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Graph Fourier Transform based on Directed Laplacian

Jordan decomposition of the directed Laplacian: L = VJV !

Graph Fourier basis: Columns of V (Jordan Eigenvectors of L)

Graph frequencies: Eigenvalues of L (diagonal entries of Jordan
blocks in J)

GFT and IGFT: [f=VF

Frequency Ordering: based on Total Variation

Total Variation: TVg(f) = ||f — Sf||1 = ||f — (I = L)f||1
| TVg(F) = [|LF[]1 |

Theorem

TV of an eigenvector v, is proportional to the absolute value of the
corresponding eigenvalue
TV (v,) x | N
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Frequency Ordering

Frequency Ordering

Im

TmI
HF HF
LF
- — o - ——
AN-1 Al Ao Av_2 Re

Undirected graph with real edge weights.

Im

Graph with positive edge weights

Im

I HF

)\0 )\] )\;\s’,Q )\_‘r\w,l Re

Undirected graph with real and
non-negative edge weights.
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Example —

Graph signal f =[0.1189 0.3801 0.8128 0.2441 0.8844]" defined on
the directed graph

IF(\e) |

Im(N\,) 100 Re(\¢)

A weighted directed graph

Spectrum of the signal f = [0.1189 0.3801 0.8128 0.2441 0.8844]7
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Example =

Graph signal f =[0.1189 0.3801 0.8128 0.2441 0.8844]" defined on
the directed graph

1.5 | High frequency component

Low frequency component |

[f(Ae) |

Im(N\,) 100 2 Re(\¢)

A weighted directed graph

Spectrum of the signal f = [0.1189 0.3801 0.8128 0.2441 0.8844]7
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Example: Zero Frequency

Eigenvector corresponding to Ao is vo = ﬁ[l, 1,... 1"

TV of vq is zero
For a constant graph signal f = [k, k,...]”, GFT is f= [(kvN), 0,...]"

Only zero frequency component

9 —h

f
R
g\ \/ !

A weighted directed graph

£ |

_5 4
Im(Ar) -10 0 2 Re(Ar)

Spectrum of the constant signal f =[1111 1]
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DSPg FRAMEWORK Examples

Example: Zero Frequency

Eigenvector corresponding to Ao is vo = ﬁ[l, 1,... 1"

TV of vq is zero
For a constant graph signal f = [k, k,...]”, GFT is f= [(kvN), 0,...]"

Only zero frequency component

The weight matrix based approach of GFT fails to give this basic
intuition

| Only zero frequency component

£ |

6

_5 4
Im(A) -10 0 2 Re(Ar)

A weighted directed graph
Spectrum of the constant signal f =[1111 1]
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Comparison

Comparison of the GSP Frameworks

GSP based on Laplacian

DSP: Framework

Based on Weight | Based on Directed
Matrix Laplacian
Shift Op- | Not defined The weight matrix W | Derived from directed
erator Laplacian (I — L)
LSI Filters Not applicable Applicable Applicable
Applicability| Only undirected graphs Directed graphs Directed graphs
Frequencies | Eigenvalues of the | Eigenvalues of the | Eigenvalues of the di-
Laplacian (real) weight matrix rected Laplacian
Harmonics | Eigenvectors of the | Eigenvectors of the | Eigenvectors of the
Laplacian matrix (real) weight matrix directed Laplacian
Frequency Laplacian quadratic | Total variation Total variation
Ordering form (natural) (not natural) (natural)
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Filtering in Spectral Domain

x € RN be a single-channel input signal on the graph

Graph convolution of the input graph signal x with a filter g is
x+g:=U((UTx) o UTg)) =UGUx,

G := diag(g) = diag{21, ..., &n}

Spectral-GNN* learn all the filter coefficients (expensive)

Approximate via Kt order polynomials of the graph
frequencies (K << N)

g(\) = Z,K:o 0:\j, @ € RN are filter coefficients

K . K ]
xxg~ U (Z 9,-/\’) UTx=>) 6iLix.

i=0 i=0

4Joan Bruna et al. “Spectral networks and deep locally connected networks on graphs”. In: 2nd International
Conference on Learning Representations, ICLR. 2014.
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Spectral Graph Neural Networks®

Input graph and features

@
=

HO =X

Spectral-Signed-GCN {=1:L

| > E
' Spectral Filtering /,/ Feature Transformation
-7 + Non-linearity

HO = ¢ (HO ©0)

HO Z PR

Predictions

Predict
node class

®

" Predict
link sign

The spectral GNN filters and transforms the features repeatedly throughout L layers
and then applies a linear prediction.

5Rahul Singh and Yongxin Chen. “Signed Graph Neural Networks: A Frequency Perspective”. In: Transactions
on Machine Learning Research (2023). 1ssN: 2835-8856. URL: https://openreview.net/forum?id=RZveYHgZbu.
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CONCLUSIONS

GCN®

First order polynomial filter (K = 1) with 6y = 26 and
61 =—0

xxg~0 (21— L,) x=0 (1+ D"2AD/?) x
With self-loop A=A+ 1and D=D +1
xxg~ 0 (D~Y/2AD1/2) x

0. °  ogP
OO Oo 00/8\0

Update 1
T (h5”wé'> +3 (.h_ﬁ”WEIJ)

JEN: Y

%Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with Graph Convolutional Networks”. In:
International Conference on Learning Representations (ICLR). 2017.
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Graph Neural Networks =
P
O
1¢ layer aggregates v o
messages from — .

1-hop neighbors \ . ‘
. e
o | rom'
] B 5.
D ®
Input Graph 2" |ayer aggregates 4

messages from .
2-hop neighbors

B GNNs learn latent node representations via
H Feature Aggregation and Feature Transformation

" Vanilla GCN: ¢t layer reads
HO — &+ (p H¢D @(f))

5 HO =X, P=D"Y2AD"'? is the low-pass feature aggregation
filter, @Y is a learnable transformation matrix
Graph Signal Processing
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Takeaways

Introduction to Graph Signal Processing (GSP)

Graph Fourier Transform

Laplacian Eigenvalues as graph frequencies

Laplacian eigenvectors as graph Fourier basis

Graph wavelets
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